@article { author = {Mokarram, Marzeyeh and Darvishi, Ali and Negahban, Saeed}, title = {The Relation between Morphometric Characteristics of Watersheds and Erodibility at different altitude levels using Topographic Position Index (TPI) Case Study: Nazloochaei Watershed}, journal = {Scientific- Research Quarterly of Geographical Data (SEPEHR)}, volume = {26}, number = {101}, pages = {131-142}, year = {2017}, publisher = {National Geographical Organization}, issn = {2588-3860}, eissn = {2588-3879}, doi = {10.22131/sepehr.2017.25732}, abstract = {Extended Abstract Introduction Watershed is an area of land that surface water of rain and melting snow conduct towards a single point, which is usually out of the basin. Check of watershed is one of the main strategies for integrated management of natural resources and sustainable development. Recently, the availability of remote sensing (RS) data and Geographical information system (GIS) technologies has allowed for improved understanding of the morphometric properties and surface drainage characteristics of many watersheds in different parts of the world (Parveenet al., 2012; Nayar& Natarajan, 2013). For example, Shrimaliet al. (2001) presented a case study of the 42 km Sukhana lake catchment in the Shiwalik hills for the delineation and prioritization of soil erosion areas. In addition, Srinivasaet al. (2004) used GIS techniques for morphometric analysis of subwatersheds in the Pawagada area, Tumkur district, Karnataka. Nookaratnamet al. (2005) carried out a study on dam positioning through prioritization of micro­watersheds using the sediment yield index (SYI) model and morphometric analysis. Khan et al. (2001), used RS and GIS techniques for watershed prioritization in the Guhiya basin and sub-watersheds in Odisha, India respectively.   Materials & Methods The study area is one of the subwatersheds of the river of Urmia (Nazloochaei) that is located in North West of Iran with an area of 948.75 km2. The study area was selected for detailed morphometric analysis using Geography information system (GIS). The input data for morphometric analysis was DEM with resolution of 30 m from ASTER satellite. The steps of stream extraction consist of: 1. Extraction of drainage networks from the DEM using the flow direction method, which consists of the following steps (O’Callaghan & Mark, 1984): i. Fill Sinks: A sink is an uncompleted value lower than the values of its neighborhood. To ensure proper drainage mapping, these sinks were filled by increasing elevations of sink points to their lowest outflow point. ii. Calculate Flow Direction: Using the filled DEM produced in Step1, the flow directions were calculated using the eight-direction flow model, which assigns flow from each grid cell to one of its eight adjacent cells in the direction with the steepest downward slope. iii. Calculate Flow Accumulation: Using the output flow direction raster created in Step2, the number of upslope cells flowing to a location was computed. iv. Define Stream Network: The next step is to determine a critical support area that defines the minimum drainage area that is required to initiate a channel using a threshold value. v. Stream Segmentation: After the extraction of drainage networks, a unique value was given for each section of the network associated with a flow direction. Morphometric analysis of the study area consist of: Stream number (Nu) Nu is number of segments in order U Stream order (U) Cumulative length of streams (L), L = ∑Nu, L is calculated as the number of streams in each order and total length of each order is computed at sub-watershed level (Horton, 1945). Bifurcation ratio (Rb) Rb=Nu/N (u+1) N (u+1) = Number of segments of the next higher order (Schumms, 1956), Watershed relief (Bb), Bb = Hmax – Hmin, Bb is defined as the maximum vertical distance between the lowest and the highest points of a sub-watershed. Hmax and Hmin are maximum and minimum elevations respectively (Schumms, 1956) Drainage density (Dd) Dd=Lu/A, A=Watershed area (km2), L (u) is total stream length (Horton, 1932) Stream frequency (Fs), Fs = Nu/A, Fs is computed as the ratio between the total number of streams and area of the watershed (Horton, 1932) Form factor (Rf) Rf =A/Lb2, Rf is computed as the ratio between the watershed area and square of the watershed length. 𝐿 is the watershed length (Horton, 1932) Circularity ratio (Rc) Rc= 4π*A/P2, P is the watershed perimeter (km) Elongation ratio (Re) Re= (2/Lb)*(A/π) 0.5   Results and discussion The results showed that according to the high number of streams (489 waterways), the existence of first, second and third degree streams, the high length of the streams, the high proportion of length of the streams in relation to the basin area, high coefficient of relief which indicates high elevations and slopes, the area is erodible and requires more management. Also, Landform studies in the studied area showed that with the help of morphometric characteristics, the sensitivity of landforms to erosion can be determined in the area. So, after the mapping of landforms using topographic position index (TPI), and considering the erosion-sensitive areas through morphometric characteristics, erosion-sensitive landforms in the study area were determined, So that the increase in the number of waterways and their length in the watershed indicates an increase in erosion. Comparing the map of the landforms and the map of the streams in the studied area, it was determined that class 4 (U-shaped valleys) and class III (high drainage) landforms have the highest erodibility. The results showed that, with increasing drainage density, the erodibility increases and the highest erodibility was observed in Class 4 (U-shaped valleys) and Class 6 landforms due to the high drainage density.   Conclusion Ridge landforms such as those in high altitude (landforms in class 9 and 10), had the highest erosion and were therefore the most sensitive landforms. The drainage density features as the most important factor for determination of erosion and its relation to landforms were used. The results showed that by increasing the amount of drainage density the erosion increases which were for landforms Class 4 and Class 6. This study has demonstrated that morphometric characteristics can be used to predict other watershed characteristics.}, keywords = {Morphometry,Geographic Information Systems (GIS),Erodibility,Morphometry of Nazloochaei watershed,Digital elevation model (DEM)}, title_fa = {ارتباط ویژگی های مورفومتری حوضه های آبخیز و فرسایش پذیری در سطوح مختلف ارتفاعی با استفاده از شاخص موقعیت توپوگرافی (TPI)}, abstract_fa = {شناخت عوامل هیدروژئومورفولوژیک و عملکرد آنها در حوضه آبخیز به منظور شناخت و مدیریت محیط حوضه آبخیز، اهمیت زیادی دارد. در این پژوهش یکی از زیرحوضه‌های آبخیز رودخانه ارومیه (نازلوچای) واقع در شمال غرب ایران با مساحت 75/948 کیلومترمربع با محاسبه و آنالیز مورفومتری و استفاده از فنون سیستم اطلاعات جغرافیایی مورد بررسی قرارگرفته است. برای استخراج آبراهه‌های منطقه و بررسی حوضه آبخیز از نظر مورفومتری از مدل رقومی ارتفاع (DEM) 30 متر استفاده شد. پارامترهای مورفومتری بررسی شده در این مقاله شامل تعداد آبراهه‌ها (Nu)، رتبه آبراهه (U)، مجموع طول آبراهه (L)، ضریب بیفرکاسیون (Rb)، پستی و بلندی (Bb)، چگالی زهکشی (Dd)، فراوانی آبراهه (Fs)، فاکتور شکل (Rf)، ضریب گردی (Rc) و ضریب مستطیل معادل (Re) می‌باشد. نتایج نشان داد که با توجه به تعداد آبراهه‌ها (489 آبراهه)،  وجود آبراهه‌های  درجه اول، دوم و سوم، زیاد بودن طول آبراهه‌ها، بالا بودن نسبت طول آبراهه‌ها نسبت به مساحت حوضه، ضریب رلیف بالا که نشان دهنده وجود ارتفاعات و شیب زیاد، منطقه فرسایش پذیر بوده و نیاز به مدیریت بیشتر دارد. همچنین مطالعات لندفرم در منطقه مورد مطالعه نشان داد که به کمک ویژگی‌های مورفومتری می‌توان میزان حساسیت لندفرم‌ها به فرسایش را در منطقه مشخص نمود. به طوری که بعد از تهیه نقشه لندفرم‌ها با استفاده از شاخص موقعیت توپوگرافی (TPI)، و در نظرگرفتن مناطق حساس به فرسایش از طریق ویژگی‌های مورفومتری، لندفرم‌های حساس به فرسایش در منطقه مورد مطالعه مشخص شد. به طوریکه افزایش تعداد آبراهه‌ها و طول آن در حوضه آبخیز نشان دهنده افزایش فرسایش است. با مقایسه نقشه لندفرم‌ها و نقشه آبراهه‌های منطقه مورد مطالعه مشخص شد که لندفرم‌های کلاس 4 (دره‌های U شکل) و لندفرم‌های کلاس 3 (زهکش‌های مرتفع) دارای بیشترین فرسایش‌پذیری هستند. نتایج نشان داد که با افزایش میزان چگالی زهکشی میزان فرسایش‌پذیری افزایش می‌یابد که در لندفرم‌های کلاس 4 (دره‌های u شکل) و کلاس 6 بیشترین میزان فرسایش‌پذیری با توجه به بالا بودن چگالی زهکشی دیده شد.}, keywords_fa = {مورفومتری,فرسایش پذیری,لندفرم,چگالی زهکشی}, url = {https://www.sepehr.org/article_25732.html}, eprint = {https://www.sepehr.org/article_25732_9b57dbaa9f4321956397d5da2636d7a6.pdf} }