Document Type : Research Paper

Authors

1 Assistant Professor, Department of Geography, Amin University of Law Enforcement Sciences

2 Professor of Malek Ashtar University of Technology

Abstract

Extended Abstract
Introduction
Topographic maps show natural and artificial features. natural features such as rivers, lakes, mountains, etc., Man-made features such as cities, roads and bridges. Using the satellite images is a way to extract digital elevation models. In general, there are two types of resolution in digital ground elevation models.
 üArea resolution: The dimensions of the length and width of each cell in the pixel grid is a digital elevation model that shows the minimum dimensions of the topographic features taken on the ground.
ü Height resolution: represents the minimum elevation dimensions that the digital elevation model is able to display. For example, in the digital model of ground elevation with a resolution of 30 meters, elevation features less than 30 meters are not visible.
The digital elevation model can be prepared for a region with different accuracy. The high accuracy of the digital elevation map provides more accurate estimates of the physiographic characteristics of the basin, but the preparation of such maps is very costly. PRISM sensor from ALOS satellite with three cameras: 1- Forward 2- Vertical 3- Forward, which is captured earth surface with the characteristics of the earth (low and high). Therefore, an object that is high above the ground is shown with other points on a flat surface. As a result, by imaging points from different angles, the elevation of those points can be obtained through adaptive mathematical calculations. The purpose of this study is to evaluate the accuracy of the digital elevation model generated by the PRISM sensor of ALOS satellite in comparison with the digital elevation model of ASTER and SRTM for Sarakhs border region (between Iran and Turkmenistan).
 
Method
The study area is located in north-eastern Iran in the range of 35 to 38 degrees north latitude and 56 to 60 degrees east longitude and on the border between Iran and Turkmenistan in the border region of Sarakhs. The research method in this research has an exploratory aspect that the production and extraction of digital elevation model from PRISM sensor stereo images from Alves satellite and its evaluation is with digital model extracted from ASTER image. The digital SRTM model has a spatial resolution of 90meters, the digital ASTER model has a spatial resolution of 15 meters and the digital elevation model obtained from the PRISM sensor from the ALOS satellite is 5 meters. In this study, elevation control points using Google Earth and GPS have been examined. The algorithms used in this method to extract elevation information are the same as the algorithms used in the photogrammetric method. Elevation digital models are made from satellite images taken in pairs. The accuracy of digital elevation models of this method is perfectly proportional to the scale or resolution of satellite images.
Results & Discussion
In this study, we evaluated the digital elevation model from stereo satellite images of ALOS/PRISM satellite and compared it with the digital model of ASTER elevation and ground observations in the Sarakhs border region located on the border between Iran and Turkmenistan. In this study, the ability to generate a digital elevation model prepared from stereo images extracted from a PRISM sensor with a file of rational polynomial coefficients has been investigated, and we compared it with digital models extracted from stereo ASTER satellite and digital models extracted from SRTM. The results obtained from the digital elevation model are the accuracy of the digital elevation model produced by the pair of ASTER satellite images using a correlation between the two images of 0.47 pixels. Due to the spatial accuracy of the image pixels, which is about 15 meters, the accuracy of the digital model is less than the size of pixels, i.e. less than 15 meters, 6 meters horizontally and 7 meters vertically, which is a total of 13 meters. The results show that RMSE as error index for digital model of elevation extracted from ASTER and PRISM and ground observations are 7.46, 8.77, 3.66 and 6.8 meters, respectively. The results obtained from the stereo images of the PRISM sensor are the standard deviation of the pixels in the longitudinal direction of 1.9 meters and in the transverse direction of 2.3 meters and the distance between the pixels of the digital model is 3 meters high. Therefore, the accuracy of the digital model extracted from PRISM sensor images is higher than SRTM and ASTER. It is recommended to use a high-precision digital elevation model in all borders of the country, which uses a digital elevation model produced from stereo PRISM images from ALOS satellite, which is accompanied by polynomial logical coefficient (RPC) files for geometric correction of images.
 
Conclusion
The higher the accuracy of the DEM, the more efficient it will be and give border commanders the ability to make better decisions in different situations. The elevation accuracy obtained from the stereo images of the PRISM sensor is 3 meters. The accuracy of the digital model of SRTM elevation in the plains is about 30 meters, which can be used for studies of phase zero and one of the projects, as well as reducing the huge costs of studies. The results of this paper, shows that the accuracy of the digital elevation model produced from the stereo images of the PRISM sensor is higher than the digital elevation and SRTM digital models, i.e. the RMSE error and standard deviation are relatively lower. As a result, it is recommended for border studies that require higher accuracy, and the entire borders of the country, to use the digital elevation model with accuracy.

Keywords

1- آقاطاهر، صمدی، لعلی ­نیت، نجفی؛ رضا،  مهدی،  ایلیا، ایمان (1395). ارزیابی مقایسه ای صحت ارتفاعی مدل­ های رقومی ارتفاعی ASTERو SRTM. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی (سپهر)، 25(99), 103-113.
2- اشرفی، علیمی؛ علی، محمدامیر (1393). مقایسه روش ­های مختلف تهیه مدل ارتفاع رقومی؛ موردشناسی: حوضه آبخیز نوفرست، شهرستان بیرجند، استان خراسان جنوبی. فصلنامه علمی- پژوهشی جغرافیا و آمایش شهری – منطقه ­ای: 4 (13)، 119- 139.
3- حسین ­زاده، نداف سنگانی؛ سیدرضا، مهوش (1392). ارزیابی دقت مدل­ های رقومی ارتفاع (DEMs) حاصل از نقشه ­های توپوگرافی و مقایسه ­ی تطبیقی آن با DEMهای ماهواره ­ای (مطالعه­ ی موردی: DEMهای توپوگرافی و ASTER منطقه­ ی آبغه در خراسان رضوی). فصلنامه پژوهش­ های جغرافیای طبیعی، 45 (1)، 71-86.
4- خبازی، مهرابی، اعرابی؛ مصطفی، علی، جواد (1398). ارزیابی دقت آزمایی مدل­ های رقومی ارتفاعی (DEM) ماهواره­ های ASTERو SRTMبا مشاهدات دقیق زمینی(DGPS)  مطالعه موردی: از سد آزاد به دشت قروه-دهگلان، سنندج. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی، 28 (111) ، 163-174.
5- شفیعی خورشیدی، متین­ فر، علوی­ پناه، فرخی؛ فاطمه، حمیدرضا، سیدکاظم، مهدی (1390). تولید مدل رقومی ارتفاع با استفاده از زوج تصویر سنجنده ASTER. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (کاربرد سنجش از دور و GIS در علوم منابع طبیعی): 2 (3)؛1 -11.
6- فاطمی، علیزاده نایینی؛ سیدباقر، امین. (1396). ارزیابی مدل­ های ارتفاعی رقومی جهانی در قیاس با مدل­ های محلی از منظر ارتفاع و شیب. مجله علمی-پژوهشی رایانش نرم و فناوری اطلاعات، 6(1)، 26-35.
7- کمالی، سرمدیان، محمودی؛ اردوان، فریدون، شهلا (1388). تولید مدل رقومی ارتفاع از تصاویر ASTER و ارزیابی دقت آن در منطقه ایوانکی استان سمنان. تحقیقات آب و خاک ایران، 40 (1)، 59-66.
8- Alizadeh Naeini, A., Fatemi, S. B., Babadi, M., Mirzadeh, S. M. J., & Homayouni, S. (2020). Application of 30-meter global digital elevation models for compensating rational polynomial coefficients biases. Geocarto International, 35(12), 1311-1326. doi: https://doi.org/10.1080/10106049.2019.1573854
9- Croneborg, L., Saito, K., Matera, M., McKeown, D., & van Aardt, J. (2020). Digital elevation models.
10- Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M. P., Benes, B., & Gain, J. (2019). A review of digital terrain modeling. Paper presented at the Computer Graphics Forum.
11- Gdulová, K., Marešová, J., & Moudrý, V. (2020). Accuracy assessment of the global TanDEM-X digital elevation model in a mountain environment. Remote Sensing of Environment, 241, 111724. doi: https://doi.org/10.1016/j.rse.2020.111724
12- Habib, A., Akdim, N., Labbassi, K., Khoshelham, K., & Menenti, M. (2017). Extraction and accuracy assessment of high-resolution DEM and derived orthoimages from ALOS-PRISM data over Sahel-Doukkala (Morocco). Earth Science Informatics, 10(2), 197-217. doi: https://doi.org/10.1007/s12145-017-0287-5
13- Kim, D., Lee, H., Jung, H. C., Hwang, E., Hossain, F., Bonnema, M., . . . Getirana, A. (2020). Monitoring River Basin development and variation in water resources in transboundary Imjin River in North and South Korea using remote sensing. Remote Sensing, 12(1), 195. doi: https://doi.org/10.3390/rs12010195
14- Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R., & Mukhopadhyay, A. (2013). Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205-217. doi: https://doi.org/10.1016/j.jag.2012.09.004
15- Ramírez-Hernández, L. R., Rodríguez-Quiñonez, J. C., Castro-Toscano, M. J., Hernández-Balbuena, D., Flores-Fuentes, W., Rascón-Carmona, R., . . . Sergiyenko, O. (2020). Improve three-dimensional point localization accuracy in stereo vision systems using a novel camera calibration method. International Journal of Advanced Robotic Systems, 17(1), 1729881419896717. doi: https://doi.org/10.1177/1729881419896717
16- Takahashi, M., Shimada, M., Tadono, T., & Watanabe, M. (2012). Calculation of trees height using PRISM-DSM. Paper presented at the 2012 IEEE International Geoscience and Remote Sensing Symposium.
17- Zeraatpisheh, M., Jafari, A., Bodaghabadi, M. B., Ayoubi, S., Taghizadeh-Mehrjardi, R., Toomanian, N., . . . Xu, M. (2020). Conventional and digital soil mapping in Iran: Past, present, and future. Catena, 188, 104424. doi: https://doi.org/10.1016/j.catena.2019.104424