Detection and analysis of temperature trend at the 1000 hPa level in Iran

Document Type : Research Paper

Authors

1 PhD of Climatology, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran

2 Associate Professor of Geography, Amin police University, Tehran, Iran

3 Assistant Professor of Geography, Amin police University, Tehran, Iran

10.22131/sepehr.2022.252778

Abstract

Extended Abstract
Introduction
Temperature is considered to be an important element of climate whose changes have important consequences for human life. The present study seeks to detect trends and significant changes in the temperature at the 1000 hPa level in Iran. Due to its geographical location, Iran climate is affected by various patterns of sea level pressure such as subtropical high-pressure, Siberian high-pressure, Monsoon low-pressure, the Mediterranean low pressure, Black Sea low pressure and Sudan low pressure during warm and cold seasons. These patterns have changed in different time series leaving adverse effects such as decreased precipitation and increased temperature, while probably changing Iran climate from semi-arid to arid and causing climate hazards. Having enough information on the temperature characteristics and its future trends, it is possible to decide on macro politics and a comprehensive method for the management of an area. Therefore, the present study aims to detect trends and significant changes in air temperature at the 1000 hPa level.
 
Materials & Methods
45 ° to 64 ° Eastern longitude and 45 ° to 64 ° latitude were selected to study temperature changes at the 1000 hPa level in Iran. In this study, temperature data of 1000 hPa level recorded in a 70-year statistical period (1950 to 2020) and data retrieved from NCEP/NCAR with a spatial resolution of 2.5 by 2.5 degrees have been used to prepare time series and necessary maps. The Kendall Man test was used to analyze the trend of time series. The 70-year statistical period (1950 - 2020) was divided into 10 decades and average seasonal temperature was used.
 
Results & Discussion
The average temperature of Iran at the 1000 hPa level is rising by 1.34° C per century and its standard deviation has reached its maximum value in recent decades. In the last two decades of the statistical period, 30 ° C contour line has approached Iran from southwest. Temperature trend at the 1000 hPa level is investigated in 4 different seasons of Iran.
Summer: according to the Mann-Kendall test, average temperature in summer shows a significant trend and has increased by 0.2 ° C every decade.
Autumn: time series of temperature data in autumn shows a significant trend and the slope of the regression line (temperature) has increased with a rate of 0.0451 ° C every decade.
Winter: average temperature has decreased at the beginning of the study series and increased at the end of the series. 15.26 ° C and 8.18 ° C (in 1966 and 1972) were the highest and the lowest average temperature recorded in winter, respectively.
Spring:The average temperature in Iran has increased by 0.197 ° C every decade. In this 70-year statistical period, average temperature of Iran in this season was 24.37 ° C with the highest annual average temperature recorded as 27.18 ° C in 2008 and the lowest annual average temperature recorded as 21.83 ° C in 1972 and 1992.
 
Conclusion
Average temperature in Iran is raising with a rate much higher than the global average (0.74 ° C  per hundred years), due to wide fluctuations in the general circulation patterns of the atmosphere and changes in sea level pressure pattern. Thus, it can be predicted that the temperature in southern Iran may reach over 60 ° C by the end of the century threatening southern riparian provinces with dangerously rising water level and the risk of drowning. Wildfires will still be common in Iranian forests, the number and intensity of floods will increase sharply, and water resources will reach a critically low status.

Keywords


1- رئیسی، سلطانی محمدی؛ عاطفه، امیر (1395)، بررسی تغییرات زمانی بارندگی و میانگین، کمینه و بیشینه دما (مطالعه موردی: ایستگاه شهرکرد)، مجله علمی و ترویجی نیوار، 95-94، 80-69.
2- رحیم‌زاده، عسگری؛ فاطمه، احمد (1383)، نگرشی بر تفاوت نرخ افزایش دمای حداقل و حداکثر و کاهش دامنه شبانه‌روزی دما در کشور، تحقیقات جغرافیایی،73، 155-171.
3- زابل عباسی، ملبوسی، باباییان، اثمری، برهانی؛ فاطمه، شراره، ایمان، مرتضی، رضا (1389)، پیش‌بینی تغییرات اقلیمی خراسان جنوبی در دوره 2039 -2010 میلادی با استفاده از ریز مقیاس نمایی آماری خروجی مدل ECHO-G، نشریه آب و خاک (علوم و صنایع کشاورزی)،24(2) ، 233-218.
4- صبوحی، سلطانی؛ راضیه، سعید (1387)، تحلیل روند عوامل اقلیمی در شهرهای بزرگ ایران، مجله علوم آب و خاک، 12 (46)، 303-321.
5- عزیزی؛ قاسم (1383)، تغییر اقلیم، انتشارات قومس، چاپ اول، تهران.
6- عزیزی، روشنی؛ قاسم، محمود، (1387)، مطالعه تغییر اقلیم در سواحل جنوبی دریای خزر به روش من-کندال، پژوهش‌های جغرافیایی، شماره 64، صص 13-28.
8- عساکره؛ حسین (1386)، تغییر اقلیم، انتشارات دانشگاه زنجان، چاپ اول، زنجان.
9- علی‌پور؛ یوسف (1395)، بررسی سینوپتیکی نوسانات فشار زیاد جنب حاره، رساله دکتری آب و هواشناسی، دانشگاه خوارزمی.
10- کاویانی، علیجانی؛ محمدرضا، بهلول (1371)، مبانی آب هواشناسی، انتشارات سمت، چاپ دوم، تهران.
11- مجرد، بساطی؛ فیروز، سعید (1393)، واکاوی تغییرات زمانی و مکانی دماهای حداکثر ایران، مدرس علوم انسانی- برنامه‌ریزی و آمایش فضا، (18)2، 129-159.
12- مقیمی؛ ابراهیم (1396)، چرا دانش مخاطرات (مخاطره‌شناسی) امری فطری است؟، مجله مدیریت مخاطرات محیطی، 4(1)، 7-
13- مقیمی، گودرزی‌نژاد؛ ابراهیم، شاپور (1390)، ترجمه مخاطرات محیطی از کیت اسمیت، انتشارات سمت، چاپ اول، تهران.
14- Chen S, Liu Y and Axel T, (2006). Climatic change on the Tibetan plateau: potential evapotranspiration trends from 1961–2000, Journal of Climatic Change, l 76, 291–319.
15- Grieser J. S. Tromel, C. D. Schonwiese (2002). Statistical time series decomposition into significant components and application to European temperature, Theor. Appl. Climatol, 71, 171-183.
16- Mamtimin. B., A.M.M. Et-Tantawi, D. Schaefer, F.X. Meixner and M. Domroes, (2011). Recent trends of temperature change under hot and cold desert climates: Comparing the Sahara (Libya) and Central Asia (Xinjiang, China), Arid, Envir, 75 (11), 1105-1113.
17- Martinez C. Maleski J. and Miller F. (2012). Trends in precipitation and temperature in Florida, USA, Journal of Hydrology, 453, 259-281.
18- Rio S. D., Herrero L., Pinto-Gomes C., and Peras A, (2011). Spatial analysis of mean temperaturetrends in Spain over the period 1961-2006, Global and Planetary Change, 78, 65-75.
19- Stastna, V, (2010). Spatio-temporal changes in surface air temperature in the region of the northern Antarctic Peninsula and south Shetland islands during 1950-2003, Polar Sci, 4, 18-33.
20- Tabari H. and Hosseinzadeh-Talaee P, (2011). Analysis trends in temperature data in arid and semi-arid regions of Iran, Journal of Global and Planetary Change, 79, 1-10.
21- Tabari H. and Hosseinzadeh-Talaee P. (2011). Recent trends of mean maximum and minimum air temperatures in the western half of Iran, Journal of Meteorology and Atmospheric Physics, 111, 121–131.
22- Vinnikov KY, Grody NC, Robock A, Stouffer RJ, Jones PD and Goldberg MD, (2006). Temperature trends at the surface and in the troposphere, J Geophys Res, 111. 103-116.
23- Yang X. L., Xu L. R., Li C. h., Hu J. and Xia X. H, (2012). Trends in temperature and precipitation in the Zhangweinan River basin during last 53 years, Procedia Environmental Sciences, 13, 1966-1774.
24- Yue S., M. Hashino, (2003). Temperature trends in Japan: 1900–1996, Theor. Appl, Climatol.75, 15–27.