Document Type : Research Paper

Authors

1 M.Sc.RS GIS.University of Mohaghegh Ardabili

2 M.Sc.RS GIS. university of Mohaghegh Ardabili

3 Associate professor of geomorphology, Faculty of literature, University of Mohaghegh Ardabili

Abstract

Extended Abstract
Introduction
Earthquake is a natural disaster which sometimes causes injury and loss of life to many people and generates tsunamis. As one of the most frequently occurring natural phenomena, it is considered by many as the most frightening and dangerous natural hazard. With recent developments of remote sensing, radar interferometry is accepted as an efficient and relatively accurate method of measuring ground surface displacement. The present study has investigated June 25, 2020 earthquake in Qotur (the city of Khoy).
 
Materials & Methods
The present study have utilized InSAR and PSI techniques to estimate the amount of displacement caused by the earthquake. Remotely sensed images collected in the upstream passages were processed in Sarproz software. Radar interferometry and other advanced methods such as PSI have made detection of vertical surface displacements possible even in a few millimeter range. The present pairs of images have been selected with a good correlation from Sentinel-1 data.
 
Results & Discussion
The present study seeks to estimate the extent of ground heave and subsidence caused by earthquakes. Images selected from statistical periods before and after the earthquake were processed, and outputs were presented as figures and diagrams. Graphs showed the accuracy of the work and annual cumulative displacement. Results indicated the presence of a surface displacement between -16 and +16. The most intense subsidence and ground heave have happened in the northeastern regions (Gogerd village) and the southern regions (Kotanabad, Mir Omar, Grenavik villages), respectively.
 
Conclusion
Maximum displacements (heave and subsidence) and other data collected from the earthquake show that the Bashkala left-Lateral Strike-Slip fault has caused this earthquake.

Keywords

1- احمدزاده، روستایی، نیک‌جو، دهقانی؛ حسن، شهرام، محمدرضا، مریم،1393، برآورد مساحت و حجم توده لغزشی با استفاده از تکنیک‌های insar و مشاهدات GPS (مطالعه موردی: پهنه لغزشی گوگرد)، پژوهش‌های ژئومورفولوژی کمی، سال چهارم، پاییز 1394، شماره 2 (پیاپی 14).
2- اصغری سراسکانرود، مدیرزاده؛ صیاد، ریحانه، 1399، برآورد تغییرات عمق برف در سطح شهرستان اردبیل و سرعین با استفاده از داده‌های ماهواره Sentinel1 با روش تداخل‌سنجی راداری، تحقیقات منابع آب ایران، سال شانزدهم، شماره 1، بهار 1399، شماره 407-394.
3- حاجب، موسوی، معصومی، رضایی؛ زهرا،  زهرا، زهره، ابوالفضل، 1397، بررسی فرونشست دشت قم با استفاده از تداخل‌سنجی راداری، مجموعه مقالات هجدهمین کنفرانس ژئوفیزیک ایران، اردیبهشت 1397، صفحه 352-355.
4- علیخان‌زاده، رضا، 1399، گزارش مقدماتی رخداد زمین‌لرزه 5 تیرماه 1399 قطور استان آذربایجان غربی، معاونت زمین‌شناسی دفتر بررسی مخاطرات زمین‌شناسی، زیست‌محیطی و مهندسی گروه لرزه‌زمین‌ساخت و زلزله‌شناسی، صفحه 9-1.
5- فتح‌الهی، آخوندزاده هنزائی، بحرودی؛ نرگس،  مهدی، عباس،1397، بررسی فرونشست زمین در اثر استخراج مواد نفتی با استفاده از روش تداخل‌سنجی رادار، فصلنامه علمی - پژوهشی اطلاعات جغرافیایی، دوره 27، شماره 105، بهار 97.
6- واجدیان، سراجیان، منصوری؛ ساناز، محمدرضا،  بابک،1390، استخراج میدان جابه‌جایی سه‌بعدی با استفاده از فن تداخل‌سنجی رادار با دریچه بررسی موردی گسل بم؛ SAR مصنوعی، 96 - 1390، صفحة 83، مجلة فیزیک زمین و فضا، دوره 37، شماره 2.
7- یاراحمدی، جمشید (1397) آشکارسازی ناپایداری‌های دامنه­‌های با استفاده از پراکنشگر دائمی (PSI) در حوضه آبخیز اهر چای " سیزدهمین همایش ملی علوم مهندسی آبخیزداری ایران و سومین همایش ملی صیانت از منابع طبیعی و محیط‌زیست 10؛ و 11 مهرماه 1397 دانشگاه محقق اردبیلی.
8- Antonio M, Armenterosa R, Lazeckyd M, Hlaváčováe I, Bakoňf M,Delgadoc J, Joaquim J, Sousah, Francisco Lamas Fernándezi, Marchamaloj M, Caro-Cuencak M, Papcol J, Perissinm D,2018, Deformation monitoring of dam infrastructures via spaceborne MT-InSAR. The case of La Viñuela (Málaga, southern Spain),Procedia Computer Science 138, 346–353.
9- Beladam O, Balz T, Mohamadi B, Abdalhak M,2019, Using PS-InSAR with Sentinel-1 Images for Deformation Monitoring in Northeast Algeria,Geosciences 2019, 9, 315.
10- Colesanti, C. Ferretti, A. Novali, F. Prati, C. Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1685–1701.
11- Delgado Blasco, J.M. Foumelis, M. Stewart, C. Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129.
12- Eruption using InSAR, Remote Sens, 11718.
13- Fárová k, Jelének j, Kopa v, Strnadová v, Kycl p,2019, Sentinel-1 Data Comparing DInSAR and PSI Techniques Employed to to Monitor Highway Stability: A Case Study of a Massive Dobkoviˇcky Landslide, Czech Republic, Remote Sens. 2019, 11, 2670.
14- Ferretti, A. Prati, C. Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212.
15- Fryksten J, Nilfouroushan F, 2019, Analysis of Clay-Induced Land Subsidence in Uppsala City Using Sentinel-1 SAR Data and Precise Leveling, Remote Sens. 2019, 11(23), 2764,18PP.
16- GRANDIN R, VALLÉE M, LACASSIN R,2017, Rupture process of the Oklahoma Mw5.7 Pawnee earthquake from Sentinel-1 InSAR and seismological data, Grandin, Vallée, Lacassin, Seismological Research Letters, in press, 2017 – p. “1.
17- Jácome M, Graña A, M Valdés V,2020, Detection of Terrain Deformations Using InSAR Techniques in Relation to Results on Terrain Subsidence (Ciudad de Zaruma, Ecuador) Remote Sens. 2020, 12, 1598.22PP.
18- Kaplan O, Kaplan G,2021, Response Spectra-Based Post-Earthquake Rapid Structural Damage Estimation Approach Aided with Remote Sensing Data: 2020 Samos Earthquake, Buildings 2022, 12, 14. https://doi.org/10.3390/buildings12010014, https://www.mdpi.com/journal/buildings,pp1-17.
19- Karakhanian, A. Trifonov, V. Philip, H. Avagyan, A. Hessami, K. Jamali, F.Bayraktutan, S. Bagdassarian, H. Arakelian S. and Davatian, V. 2004. Active faulting and natural hazards in Armenia, Eastern Turkey and North-Western Iran, Tectonophysics, 380, 189-219.
20- Karimzadeh S, Mansouri B, Osmanoglu B, Djamour Y, Application of Di_erential SAR Interferometry (DInSAR) for Interseismic Assessment of North Tabriz Fault, Iran.2011,pp78-96.
21- Kaya b, Aladağ c,2017, Determining the Cognitive Structures of Geography Teacher Candidates on “Earthquake”, International Education Studies; Vol. 10, No. 1; 2017, Published by Canadian Center of Science and Education,pp122-136.
22- Kirui P, Reinosch E, Isya N, Riedel B, Gerke M,2021, Kirui P, Reinosch E, Isya N, Riedel B, Gerke M,2021, Mitigation of Atmospheric Artefacts in Multi, ORIGINAL ARTICLE, https://doi.org/10.1007/s41064-021-00138-z
23- Kyriou, A. Nikolakopoulos, K. Assessing the suitability of Sentinel-1 data for landslide mapping. Eur. J. Remote Sens. 2018, 51, 402–411.
24- Lazecký M, Perissin D, Zhiying W, Ling L, Yuxiao Q,2016, Observing Dam’s Movements with Spaceborne SAR Interferometry, Engineering Geology for Society and Territory – Volume 5,131-136.
25- Li Y, Jiang W, Zhang J, Li B, Yan Y, Wang X,2020, Sentinel-1 SAR-Based coseismic deformation monitoring service for rapid geodetic imaging of global earthquakes, Natural Hazards Research 1 (2021) 11-19.
26- Owczarz k, Blachowski j,2020, Application of satellite radar interferometry in study of the relation between surface deformation and seismic event of the 15th September 2018 in the Rudna copper mine, Poland, GEOKINEMATISCHER TAG,pp93-104.
27- Qin Y, Perissin D,2015, Monitoring Ground Subsidence in Hong Kong via Spaceborne Radar: Experiments and Validation, Remote Sens. 2015, 7,10718.
28- Roquea D, Fonseca A, Henriques M, Falcão A,2014, A first approach for displacement analysis in Lisbon Downtown using PS-InSAR, Procedia Technology 16 (2014) 288 – 293.
29- Selçuk, A.S. Erturaç, M.K. & Nomade, S. 2016, Geology of the Çaldıran Fault, Eastern Turkey: Age, slip rate and implications on the characteristic slip behaviour. Tectonophysics, v. 680, p. 155-173.
30- Suresh D, Yarrakula K,2019, InSAR based deformation mapping of earthquake using Sentinel 1A imagery, Geocarto International,559-568.
31- Tolomei C, Caputo R, Polcari M, Famiglietti N,2021, The Use of Interferometric Synthetic Aperture Radar for Isolating the Contribution of Major Shocks: The Case of the March 2021 Thessaly, Greece, Seismic Sequence, Geosciences 2021, 11, 191.
32- TONG MINH D, Hanssen O, Rocca F,2020, Radar Interferometry, 20 Years of Development in Time Series Techniques and Future Perspectives, Remote Sens. 2020, 12(9), 1364.
33- Vince M, del M,2020, Earthquake Deformation Mapping caused by the Taal Volcano.pp23-45.
34- Wibowo S, Hadmoko D, Isnaeni Y, Farda N.M, Putri A, Nurani I, Supangkat S,2021, Spatio-Temporal Distribution of Ground Deformation Due toN2018 Lombok Earthquake Series, remote sensing, Sens. 2021, 13, 2222.
35- Xiaohua X, David T, Smith-Konter B,2020, Coseismic Displacements and Surface Fractures from Sentinel-1 InSAR: 2019 Ridgecrest Earthquakes.Seismol. Res. Lett. XX, 1–7.