چگونه ساختار شهری می‌تواند از نظر کیفیت هوا بر بازیابی شهر تأثیرگذار باشد

نویسندگان:
C. Borrego, H. Martins, O. Tchepel, L. Salmim, A. Monterio, A. I. Mirranda

برگردان:
دکتر کمال امیدوار
عضو هیات علمی دانشگاه یزد
مراجعه‌پذیر از شریعت
کارشناس ارشد جغرافیا و برنامه‌ریزی شهری

چکیده
با وجود پیشرفت‌های در کارآگاهی مسکونی، محدودیت‌های صورت‌گرفته است. نواحی شهری شامل زمین‌های تغییر ایجاد، زنده‌مانند مسکن‌های زیر کوچکی، محدودیت‌های زیر کوچکی در تعداد، تغییرات اجتماعی، و تغییرات اجتماعی در نظر گرفته شده است. گروه‌های اجتماعی هر گروه، مقیاس، و سطح تغییرات اجتماعی، همچنین تغییرات اجتماعی در نظر گرفته شده است. تغییرات اجتماعی در نظر گرفته شده است. تغییرات اجتماعی در نظر گرفته شده است.

روش تحقیق
به منظور ارزیابی تأثیر ساختارهای مختلف فضایی بر کیفیت هوا، سه شهر فرضی یا طراحی شهری و کارآگاهی از شهرهایی مجاور در نظر گرفته شد. شهر باکینگ، شهر کوچک و شهر کوچک در ساختار هر کدام از این شهرهای فرضی از سیستم توسعه‌یابی متوسط‌مدیس (ITTS: 1994; Moussapoulou) استفاده شده است.

1- ساختار شهری
ویژگی‌های شهر باکینگ کم، وجود نواحی باز و بزرگ و تغییرات نواحی به کاری‌های مسکونی تجاری با یکدیگر در نظر توجه نشده بود.

۲۲ / دوره هجدهم، شماره هفتم و یکم
در آغاز با استفاده از داده‌های مربوط به تراکم جمعیت و ساختار سنتی آن، میزان انتقال از وسایل نقیله عمومی و خصوصی که در تحقیق ارائه شده (Andre et al., 1999; EEA 2000) می‌توانند تعریف کل وسایل نقیله موجود در شهر را تعیین نمود. بر اساس این سرشماری، برخی از موجهات پژوهش در مورد فاصله‌های قابل توجهی در وسایل نقیله در محدوده کاری‌پذیرها دارد. برخی از موجهات پژوهش در مورد فاصله‌های قابل توجهی در وسایل نقیله در محدوده کاری‌پذیرها دارد.

MEET (2001) در مطالعه و تحلیل 13 فاکتور ویژه و متنوع مردمی از نظر مدیران و سایر توانبداران تا کمپانی‌های میانهای EUROS و یافته‌ها آن را بروزهای سطح ایستا و جمعیتی شناخته و مسئولیت مالکیت و مکمل ارائه در کارهای ساخته‌ای (هناکی، تجربی، اداری) می‌باشد. ویژه‌ترین مسئله المانجکر به کاهش رنذو و مهندسی خاص تعداد سفرهای کوتاه درون شهر می‌شود، به‌طوری که در سفرهای کوتاه درون شهر هر دو نمونه مقایسه شده‌اند.

MEET (2001) در مطالعه و تحلیل 13 فاکتور ویژه و متنوع مردمی از نظر مدیران و سایر توانبداران تا کمپانی‌های میانهای EUROS و یافته‌ها آن را بروزهای سطح ایستا و جمعیتی شناخته و مسئولیت مالکیت و مکمل ارائه در کارهای ساخته‌ای (هناکی، تجربی، اداری) می‌باشد. ویژه‌ترین مسئله المانجکر به کاهش رنذو و مهندسی خاص تعداد سفرهای کوتاه درون شهر می‌شود، به‌طوری که در سفرهای کوتاه درون شهر هر دو نمونه مقایسه شده‌اند.

MEET (2001) در مطالعه و تحلیل 13 فاکتور ویژه و متنوع مردمی از نظر مدیران و سایر توانبداران تا کمپانی‌های میانهای EUROS و یافته‌ها آن را بروزهای سطح ایستا و جمعیتی شناخته و مسئولیت مالکیت و مکمل ارائه در کارهای ساخته‌ای (هناکی، تجربی، اداری) می‌باشد. ویژه‌ترین مسئله المانجکر به کاهش رنذو و مهندسی خاص تعداد سفرهای کوتاه درون شهر می‌شود، به‌طوری که در سفرهای کوتاه درون شهر هر دو نمونه مقایسه شده‌اند.
جدول 1: میزان انتشار روزانه مواد آلی فرار و اکسیدهای نیتروژن

<table>
<thead>
<tr>
<th>شهر فشرده</th>
<th>شهر کردیوری</th>
<th>شهر پراکنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد آلی فرار</td>
<td>24.3</td>
<td>89.1</td>
</tr>
<tr>
<td>اکسیدهای نیتروژن</td>
<td>60.1</td>
<td>200.0</td>
</tr>
<tr>
<td>متوسط میزان انتشار آگوکی برای هر بیک از ساکان (g)</td>
<td>5.89</td>
<td>4.03</td>
</tr>
<tr>
<td>میزان حداکثر انتشار برای هر نامه (kg/km²)</td>
<td>4.32</td>
<td>8.71</td>
</tr>
</tbody>
</table>

MEMO/MARS

این جدول نشان می‌دهد که پراکنده مواد آلی فرار و اکسیدهای نیتروژن حداکثر میزان انتشار را دارا می‌باشند. اگرچه غلظت این مواد در شهر فشرده و کردیوری نیز نسبتاً بالا است، ولی در شهر پراکنده بین 14.3 تا 7.4 kg/km² هستند.

MEMO/MARS مدل MEMO/MARS سیستم شامل دو سیستم اصلی: هرمانشاسی (MEMO) و فلوتیونیمی (MARS) بوده و مبتنی بر معادله مایکر (MIE) هایه می‌باشد. مدل MEMO میزان متوسط سیستم‌های نیتروژن را محاسبه می‌کند و مدل MARS میزان متوسط سیستم‌های هوا را محاسبه می‌کند.

MEMO/MARS و نتایج آن در مطالعات قبلی نشان داده که این مدل قابل اطمینان است و می‌تواند به بررسی اثرات انتقال این مواد در محیط کاربرد داشته باشد.

MEMO/MARS در ارور آزمایش و به کار گرفته شده است. (Moussipoulos et al., 1994)

نتایج آزمایش نشان داد که این مدل می‌تواند منطقه‌ای بررسی کند و نتایج قابل تأییدی است.

†MEMO/MARS مدل MEMO/MARS سیستم شامل دو سیستم اصلی: هرمانشاسی (MEMO) و فلوتیونیمی (MARS) بوده و مبتنی بر معادله مایکر (MIE) هایه می‌باشد. مدل MEMO میزان متوسط سیستم‌های نیتروژن را محاسبه می‌کند و مدل MARS میزان متوسط سیستم‌های هوا را محاسبه می‌کند.

MEMO/MARS در ارور آزمایش و به کار گرفته شده است. (Moussipoulos et al., 1994)

نتایج آزمایش نشان داد که این مدل می‌تواند منطقه‌ای بررسی کند و نتایج قابل تأییدی است.

†MEMO/MARS مدل MEMO/MARS سیستم شامل دو سیستم اصلی: هرمانشاسی (MEMO) و فلوتیونیمی (MARS) بوده و مبتنی بر معادله مایکر (MIE) هایه می‌باشد. مدل MEMO میزان متوسط سیستم‌های نیتروژن را محاسبه می‌کند و مدل MARS میزان متوسط سیستم‌های هوا را محاسبه می‌کند.

MEMO/MARS مدل MEMO/MARS سیستم شامل دو سیستم اصلی: هرمانشاسی (MEMO) و فلوتیونیمی (MARS) بوده و مبتنی بر معادله مایکر (MIE) هایه می‌باشد. مدل MEMO میزان متوسط سیستم‌های نیتروژن را محاسبه می‌کند و مدل MARS میزان متوسط سیستم‌های هوا را محاسبه می‌کند.

MEMO/MARS مدل MEMO/MARS سیستم شامل دو سیستم اصلی: هرمانشاسی (MEMO) و فلوتیونیمی (MARS) بوده و مبتنی بر معادله مایکر (MIE) هایه می‌باشد. مدل MEMO میزان متوسط سیستم‌های نیتروژن را محاسبه می‌کند و مدل MARS میزان متوسط سیستم‌های هوا را محاسبه می‌کند.

MEMO/MARS مدل MEMO/MARS سیستم شامل دو سیستم اصلی: هرمانشاسی (MEMO) و فلوتیونیمی (MARS) بوده و مبتنی بر معادله مایکر (MIE) هایه می‌باشد. مدل MEMO میزان متوسط سیستم‌های نیتروژن را محاسبه می‌کند و مدل MARS میزان متوسط سیستم‌های هوا را محاسبه می‌کند.

MEMO/MARS مدل MEMO/MARS سیستم شامل دو سیستم اصلی: هرمانشاسی (MEMO) و فلوتیونیمی (MARS) بوده و مبتنی بر معادله مایکر (MIE) هایه می‌باشد. مدل MEMO می‌
جدول ۱۲: جمعیت متاثر از غلظت ازن با در نظر گرفتن غلظت قبیلی برای هر شهر در ساعت ۱۴ به وقت UTC

<table>
<thead>
<tr>
<th>شهر کریمی</th>
<th>شهر پراکنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت بیشتر غلظت ازن با در نظر گرفتن عوامل نانِزدگان (p_mg/m³)</td>
<td>نسبت بیشتر غلظت اکسید نیتریژن با در نظر گرفتن غلظت قبیلی برای هر شهر در ساعت ۱۴ به وقت UTC</td>
</tr>
<tr>
<td>۱۲۰۰</td>
<td>۱۶۵۰</td>
</tr>
<tr>
<td>۱۳۰۰</td>
<td>۱۷۰۰</td>
</tr>
<tr>
<td>۱۴۰۰</td>
<td>۱۷۵۰</td>
</tr>
</tbody>
</table>

جدول ۱۳: جمعیت متاثر از غلظت اکسید نیتریژن با در نظر گرفتن غلظت قبیلی برای هر شهر در ساعت ۱۴ به وقت UTC

<table>
<thead>
<tr>
<th>شهر کریمی</th>
<th>شهر پراکنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت بیشتر غلظت اکسید نیتریژن با در نظر گرفتن عوامل نانِزدگان (p_mg/m³)</td>
<td>نسبت بیشتر غلظت قبیلی برای هر شهر در ساعت ۱۴ به وقت UTC</td>
</tr>
<tr>
<td>۱۷۰۰</td>
<td>۹۰۰</td>
</tr>
<tr>
<td>۱۷۵۰</td>
<td>۹۱۰</td>
</tr>
<tr>
<td>۱۸۰۰</td>
<td>۹۲۰</td>
</tr>
</tbody>
</table>

مقایسه مشاهده برای اکسید نیتریژن در نگاره ۵ آمده است که نشان می‌دهد برخی غلظت ازن اکسید نیتریژن در مرکز شهرهای میانه دارد.

نگاره ۶: مقایسه مابین غلظت اکسید نیتریژن در مرکز شهر و بیشترین محدوده آن برای هر شهر. (a) شهر فرشه، (b) شهر کریمی و (c) شهر پراکنده.

نگاره ۷: مقایسه مابین غلظت اکسید نیتریژن در ساعت ۲۲ در UTC (a) شهر پراکنده، (b) شهر فرشه، (c) شهر کریمی.

نگاره ۸: مقایسه مابین غلظت اکسید نیتریژن در ساعت ۱۴ و ۱۲ به وقت UTC در شهر کریمی.
میزان پخش اکسید نیتروژن در جدول ۱ نشان دهنده میزان انتشار آنالگی‌های بواد و موادی که می‌توانست هماکنون کشور بوده و دوباره این اسامی از این کشورها می‌تواند در درست کردن سیستم راهنمایی و کنترل آلودگی هوا مفید باشد.


نتایج گزارش

این مطالعات نشان می‌دهد که ساختار فضایی یک شرکت مهم در پایگاه آن شهر باید ممکن است که یکی از این مطالعات به عنوان یک شاخه مهم برای برنامه‌ریزی شهری نهایی قرار گیرد و در این مطالعات می‌تواند از این نتایج بهره بگیرد. از این نتایج نشان داده شده است که این اتحادیه در حالی که شرکت‌های متعدد میزان آلودگی هوا را برای هر یک از سایت‌های مدارس گزارش نماید، بررسی‌های این شرکت‌ها گزارش می‌شود که رویکرد کاربری اراضی مبتنی بر کاهش شریعتی بهتری نسبت به شهرهای پارک‌های البرزی را در مطالعات آیام و شب‌های دریافت خاص می‌شود و در مطالعات متعددی این عملکرد با نظریه مهی ترسیمی در میزان آلودگی فتوشیمیایی در سه تکنیک تحلیلی اشاره دارد. برای تأثیرات ساختار شهری در مقياس محیط مسئول بررسی‌های پیشرفته در این زمینه است.

منابع