ارزیابی و مقایسه داده های پلاریمتریک دوگانه سنجنده Sentinel1-A و TerraSAR-X در بهینه سازی شاخص پراکندگی دامنه به منظور بهبود الگوریتم تداخل سنجی PSInSAR

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد سنجش از دور، گروه مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 استادیار گروه سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

10.22131/sepehr.2019.36611

چکیده

دادههای  پلاریمتریک، یک منبع  اطلاعاتی  اضافی  در  تداخل سنجی  راداری  محسوب  میشوند  که  میتوانند  با  کمک  بهینهسازی  پلاریمتری   با  الگوریتم های  مختلف  تداخل سنجی  راداری  ترکیب  شده  و منجر  به  بهبود  کارایی  این  الگوریتم ها  شوند.  ترکیب  اطلاعات  پلاریمتری و تداخل سنجی  راداری،  که  تحت  عنوان  تداخل سنجی  راداری  پلاریمتریک  معرفی  میشود،  میتواند  منجر  به  افزایش  همدوسی  و تعداد  پیکسلهای  پراکنش گر  دائمی  شود.  این تکنیک  بر  اساس  بهینه سازی  پلاریمتریک  کانال های  پلاریمتریک  را  با  یکدیگر  ترکیب  کرده  و کانال  بهینهای  را تولید  میکند  که  در  آن  تراکم  و کیفیت  فاز  پیکسل های پراکنش گر  دائمی  نسبت  به  کانال های  خطی  افزایش  پیدا  کند.  در هر  پیکسل  این  کانال  بهینه، بردار  مکانیزم  پراکنشی  که  منجر  به  بهینه ترین  مقدار  از  تابع  هدف  مسئله  بهینه سازی  شود  به  عنوان  بردار  مکانیزم  پراکنش  بهینه  انتخاب  میشود.  با  توجه  به اهمیت موضوع  تراکم پیکسلهای  پراکنشگر  دائمی  قابل  اعتماد  در  موفقیت  روش های  PSI،هدف  اصلی  این  مقاله  استفاده  از  اطلاعات  پلاریمتریک  دوگانه  سنجنده  Sentinel1-A و  TerraSAR-Xدر  الگوریتم  تداخل سنجی  PSInSARمعمولی  و مقایسه  و ارزیابی  این  دادهها در  افزایش  تراکم  پیکسل های  پراکنش گر  دائمی  می باشد.  در این  تحقیق  ترکیب اطلاعات  پلاریمتریک  دوگانه  با الگوریتم  تداخل سنجی  PSInSAR  به  کمک  بهینه سازی  شاخص  پراکندگی  دامنه  انجام  گرفت.  به منظور  بررسی  رویکرد  پیشنهادی  این  تحقیق، تعداد  40  تصویر پلاریمتریک  دوگانه (VV/VH)سنجنده  Sentinel1-A در  بازه زمانی فوریه 2017  تا  می 2018و  20 تصویر  پلاریمتریک  دوگانه   (HH/VV) سنجنده  TerraSAR-X  در  بازه زمانی  جولای2013  تا  آپریل 2014  مورد استفاده  قرار  گرفت.  نتایج  نشان می دهد  بهینه سازی  پلاریمتریک  با  داده های  S1A تراکم  PSها  را  برای  کل منطقه، منطقه  شهری  و منطقه  غیر شهری  به  ترتیب  حدود  7/1 برابر،  6/1برابر  و 9/1  برابر  افزایش داد. همچنین این افزایش در  مورد  دادههایTSX به  ترتیب حدود 3  برابر، 2/3 برابر  و  9/2 برابر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating and comparing the dual polarized Sentinel-1A and TerraSAR-X data in in the optimization of the amplitude dispersion index to improve the PSInSAR algorithm

نویسندگان [English]

  • Saeed Azadnejad 1
  • Yasser Maghsoudi 2
1 MSc Student in Remote Sensing, Geomatics Engineering Faculty, K.N. Toosi University of Technology
2 Assistance professor, Geomatics Engineering Faculty, K.N. Toosi University of Technology
چکیده [English]

Extended Abstract
 
Introduction
Persistent Scatterer Interferometry (PSI) is a technique for detection and analysis of a network of coherent pixels referred to as the Permanent/Persistent scatterer (PS) which have high phase strength over long time periods. This technique has been widely used by the scientific community to measure the displacement related to thesubsidence/uplift, landslide, tectonic, and volcanoes. As the density and quality of PS pixels are important factors in PSI algorithms, the concept of polarimetric optimization in the PSI algorithms was proposed to improve the number of PS pixels. The recent launch of radar sensors operating with a polarimetric configuration can help improvingthePS-InSAR analysisby increasing the PS density. Therefore, the combination of thepolarimetric and interferometric techniques helpsimprove the PSI techniques, especially in non-urban areas which suffer from lack of the PS density. In this study, we investigated how the contribution of the S1A and TSX data in the PSI analysis could lead to the improvement of the results of the PSInSAR algorithm. Indeed, the main objective of this paper is to illustrate the capability of each dataset for improving the polarimetric optimization results.
 

1.        Materials & Methods

2.1
 
The proposed method was tested using a dataset of 40 dual-pol SAR data (VV/VH) acquired by Sentinel1-A between February 2017 and May 2018 and 20 dual-pol SAR data (HH/VV) acquired by TerraSAR-X betweenJuly 2013 and April 2014.
 
 2.2 Polarimetric SAR Interferometry
 
The general principle of polarimetric SAR interferometry was proposed by (Cloude & Papathanassiou, 1997) for the first time. The scattering matrix S represents the polarimetric information associated with each pixel of the image.  Considering the monostatic configuration, the scattering matrix S is defined as follows:




 

 


(1)





Where and are co-polar channels, is the cross polar channel. This matrix can be represented with the target scattering vector  as:




 

(2)





Where, is the transposed operator. The Pauli vector for the dual-pol data (HH/VV) of the TerraSAR-X sensor, is written as :




 

(3)





Similarly,the Pauli vectorfor the dual-pol data (VV/VH) of theSentinel1-A sensorcan be expressed as:




 

(4)





 
In order to generate scattering coefficient μ, projecting the scatteringvector  on the projection vectorwould be sufficient:




 

(5)





Where is thelinear combination of the elements of matrix S, i is the correspondent of the 2 images, and * represents the conjugate operator. The projection vectorfor the dual-pol data isdefined as:




 

(6)





Where, and are two real parameters whose ranges are finite and known and are related to the geometrical and electromagnetic properties of the targets. In our research, the main purpose of the polarimetric optimization is to find theoptimum projection vector, in a 2-dimensional search space,  and
 
2.3 Amplitude Dispersion Index Optimization
 
Substituting (5) into (7), the ADIfor the polarimetric case () can be expressed as follows:
 




 

 


 


(7)





 
 
 




 

(8)





 
According to (6), the polarimetric optimization problem isreduced to finding a suitable  and  in a finite and known range,so that (8) is minimized.

2.      Results & Discussion

The results showed that the proposed method improved the performance of the PSInSAR algorithm in two terms of phase quality and density of  the PS pixels. Compared with the VV channel, , the number of PSC and PS pixels increased about 2 and 1.7 times In S1A data, using the ESPO method while, compared with the normal channels like HH and VV, the number of PSC and PS pixels in ESPO method increased about 3.5 and 3 times in TSX data.Based on  these results, the optimization methods are more effective in improving the quality of the PSC densitythan in increasing the number of PS pixels. This is mainly because the employed optimization is based on minimizing ADI criterion which is used in the PSC selection. Moreover, ESPO method has been more successful for TSX data compared to the S1A data. This result is due to the higher capability of the TSX data in creating more diverse scattering mechanisms and hence identifying more optimum scattering mechanism compared to S1A data. We also investigated the effect of polarimetric optimization in increasing the PS density in urban and non-urban areas. The experimental results showed that the method succeeded to significantly increase the final set of PS pixels in both urban and nonurban areas.
 
 
 

3.      Conclusion

The results show that the optimization methods have been more successful in the improvement of PS density for  the TSX data compared to the S1A data. This result is due to the higher capability of the TSX data in creating more diverse scattering mechanisms compared to the S1A data. In summary, thanks to the polarimetric data, it is possible to exploit a larger number of pixels compared with the single polarization case.

کلیدواژه‌ها [English]

  • Polarimetric radar interferometry
  • Polarimetric optimization
  • Sentinel-1A
  • TerraSAR-X
  • Persistent Scatterer
  • coherence

1.   S. Alipour, K. F. Tiampo, S. V. Samsonov, and P. J. González, “Short-term surface deformation on the Northern Hayward Fault, CA, and nearby landslides using polarimetric SAR interferometry (PolInSAR),” Pure and Applied Geophysics, vol. 172, no. 8, pp. 2179-2193, 2015.

2. L. Chang, R. P. Dollevoet, and R. F. Hanssen, “Nationwide railway monitoring using satellite SAR interferometry,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 2, pp. 596-604, 2017.

3.   S. Cloude and K. Papathanassiou, “Polarimetric optimisation in radar interferometry,” Electronics Letters, vol. 33, no. 13, pp. 1176-1178, 1997.

4.   P. He, K. Ding, and C. Xu, “The 2016 Mw 6.7 Aketao earthquake in Muji range, northern Pamir: Rupture on a strike-slip fault constrained by Sentinel-1 radar interferometry and GPS,” International Journal of Applied Earth Observation and Geoinformation, vol. 73, pp. 99-106, 2018.

5.   M. Esmaeili and M. Motagh, “Improved Persistent Scatterer analysis using Amplitude Dispersion Index optimization of dual polarimetry data,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 117, pp. 108-114, 2016.

6.   M. Esmaeili, M. Motagh, and A. Hooper, “Application of Dual-Polarimetry SAR Images in Multitemporal InSAR Processing,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 9, pp. 1489-1493, 2017.

7. A. Ferretti, C. Prati, and F. Rocca, «Permanent scatterers in SAR interferometry,” IEEE Transactions on geoscience and remote sensing, vol. 39, no. 1, pp. 8-20, 2001.

8.   R. Iglesias, D. Monells, X. Fabregas, J. J. Mallorqui, A. Aguasca, and C. Lopez-Martínez, “Phase Quality Optimization Techniques and Limitations in Polarimetric Differential SAR Interferometry,” transformation, vol. 17, p. 18, 2013.

9.   R. Iglesias, D. Monells, C. López-Martínez, J. J. Mallorqui, X. Fabregas, and A. Aguasca, “Polarimetric optimization of temporal sublook coherence for DInSAR applications,” IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 1, pp. 87-91, 2015.

10. L. Ji, P. Izbekov, S. Senyukov, and Z. Lu, “Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000–2010, revealed by InSAR,” Journal of Volcanology and Geothermal Research, vol. 352, pp. 106-116, 2018.

11. K. A. C. de Macedo, F. L. G. Ramos, C. Gaboardi, J. R. Moreira, F. Vissirini, and M. S. da Costa, “A Compact Ground-Based Interferometric Radar for Landslide Monitoring: The Xerém Experiment,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 3, pp. 975-986, 2017.

12. Y. Maghsoudi, F. Van Der Meer, C. Hecker, D. Perissin, and A. Saepuloh, “Using PS-InSAR to detect surfacedeformation in geothermal areas of West Java in Indonesia,” International Journal of Applied Earth Observation and Geoinformation, vol. 64, pp. 386-396, 2018.

13. V. D. Navarro-Sanchez, J. M. Lopez-Sanchez, and F. Vicente-Guijalba, “A contribution of polarimetry tosatellite differential SAR interferometry: Increasing the number of pixel candidates,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 2, pp. 276-280, 2010.

14. V. D. Navarro-Sanchez and J. M. Lopez-Sanchez, “Subsidence monitoring using polarimetric persistent scatterers interferometry,” in Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 2011, pp. 1083-1086: IEEE.

15. V. D. Navarro-Sanchez and J. M. Lopez-Sanchez, “Improvement of persistent-scatterer interferometry performance by means of a polarimetric optimization,” IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 4, pp. 609-613, 2012.

16. V. D. Navarro-Sanchez, J. M. Lopez-Sanchez, and L. Ferro-Famil, “Polarimetric approaches for persistent scatterers interferometry,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 3, pp. 1667-1676, 2014.

17. D. Perissin, Z. Wang, and T. Wang, “The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoringin China,” Proceedings of the ISRSE, Sidney, Australia, vol. 1015, 2011.

18. A. C. Rudy, S. F. Lamoureux, P. Treitz, N. Short, and B. Brisco, “Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment,” International Journal of Applied Earth Observation and Geoinformation, vol. 64, pp. 51-61, 2018.

 

19. Z. Sadeghi, M. J. V. Zoej, and J.-P. Muller, “Combination of Persistent Scatterer Interferometry and Single-Baseline Polarimetric Coherence Optimisation to Estimate Deformation Rates with Application to Tehran Basin,” PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol. 85, no. 5, pp. 327-340, 2017.

20. Z. Sadeghi, M. J. V. Zoej, and J.-P. Muller, “Monitoring Land Subsidence in a RuralArea Using a Combination of ADInSAR and Polarimetric Coherence Optimization,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 8, pp. 3582-3590, 2017.

21. Z. Sadeghi, M. J. V. Zoej, A. Hooper, and J. M. Lopez-Sanchez, “A New Polarimetric Persistent Scatterer Interferometry Method Using Temporal Coherence Optimization,” IEEE Transactions on Geoscience and Remote Sensing, no. 99, pp. 1-9, 2018.

22. A. H.-M. Ng, L. Ge, Z. Du, S. Wang, and C. Ma, “Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data,” International Journal of Applied Earth Observation and Geoinformation, vol. 61, pp. 92-103, 2017.

23. T. Wang, K. DeGrandpre, Z. Lu, and J. T. Freymueller, “Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series,” International Journal of Applied Earth Observation and Geoinformation, vol. 64, pp. 171-180, 2018.

24. C. Yang, B. Kenduiywo, and U. Soergel, “CHANGE DETECTION BASED ON PERSISTENT SCATTERER INTERFEROMETRY–A NEW METHOD OF MONITORING BUILDING CHANGES,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 3, p. 243, 2016.

25. Z. Du, L. Ge, A. H.-M. Ng, Q. Zhu, X. Yang, and L. Li, “Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2satellite images,” International journal of applied earth observation and geoinformation, vol. 67, pp. 54-68, 2018.