پیش ­بینی روند توسعه شهری به سمت مناطق مخاطره­ آمیز با استفاده از تصاویر چندزمانه؛ مطالعه موردی: شهر مریوان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیارگروه جغرافیای طبیعی، دانشگاه تهران

2 دانشجوی دکتری ژئومورفولوژی ، دانشگاه تهران

3 دانشجوی دکتری ژئومورفولوژی، دانشگاه خوارزمی

4 4. کارشناس ارشد جغرافیای سیاسی، دانشگاه فردوسی

10.22131/sepehr.2019.36615

چکیده

با افزایش جمعیت و رشد شهرنشینی گسترش نواحی سکونتگاهی روند رو به رشدی داشته است. این گسترش سبب افزایش حرکت نقاط جمعیتی به سمت مناطق مخاطره­آمیز ژئومورفولوژیکی شده است که می­تواند خطرات زیادی را به همراه داشته باشد. بر این اساس هدف از تحقیق حاضر ارزیابی روند تغییرات نواحی سکونتگاهی شهر مریوان در طی سال­های 1992 تا 2017 و همچنین تعیین میزان توسعه این نواحی به سمت مناطق مخاطره­آمیز ژئومورفولوژی و در نهایت پیش­بینی این روند برای سال 2035 می­باشد. برای این منظور از تصاویر ماهواره­ای سال­های 1992، 2000، 2011 و 2017 استفاده شده است. روش کار به گونه­ای است که پس از تهیه نقشه نواحی سکونتگاهی سال­های مذکور، با استفاده از مدل [1]LCM توسعه این نواحی برای سال 2035 و میزان حرکت این نواحی به سمت مناطق مخاطره­آمیز ژئومورفولوژیکی پیش­بینی شده است. نتایج تحقیق بیانگر این است که وسعت کل نواحی سکونتگاهی از حدود 8/7 کیلومترمربع در سال 1992 به 6/16 کیلومترمربع در سال 2017 افزایش پیدا کرده است و نتایج حاصل از پیش­بینی نیز بیانگر این است که این مقدار تا سال 2035 به حدود 3/24 کیلومترمربع خواهد رسید.در طی این سال­ها در کنار افزایش روند توسعه نواحی سکونتگاهی، حرکت این نواحی به سمت مناطق مخاطره­آمیز نیز افزایش یافته است. به طوری ­که از مجموعه کل وسعت نواحی سکونتگاهی سال 1992 حدود 7/1 کیلومترمربع در مناطق مخاطره­آمیز ژئومورفولوژیکی قرار داشته که بیش­تر شامل مناطق پرشیب و حریم رودخانه­ها بوده است. در سال­های 2001 و 2011 نیز این روند به 3/2 و 9/2 کیلومترمربع افزایش یافته و همچنین در سال 2017 به میزان 3/3 کیلومترمربع افزایش یافته است. 



[1]- . Land Change Modeler
 

کلیدواژه‌ها


عنوان مقاله [English]

Predicting the trend of urban development toward hazardous areas using multi temporal images (Case Study: Marivan City)

نویسندگان [English]

  • Shirin Mohammahkhan 1
  • Hamid Ganjaeian 2
  • Somaieh Shahri 3
  • Amirali Abbaszade 4
1 Assistant Prof. Geomorphology, Tehran University
2 Ph.D. Studend Of Geomorphology, Tehran University
3 Ph.D. Studend Of Geomorphology, Kharazmi University
4 M.A. Political geography, Ferdosi University
چکیده [English]

Extended Abstract
Introduction
Cities have always been under the influence of various factors and developed under such conditions. Countries around the world are increasingly moving toward urbanization. Physical development of cities occurs in the form of human activities or changes in urban (or rural) land use, and lead to widespread use of lands and adverse environmental effects. In some cases, urban growth leads to environmental hazards and threats human societies. Although the effects of natural factors such as geomorphological phenomena have not been scientifically considered in the development of the study area, there factors had a leading role in this development. Due to geomorphological situation, elevations and steep areas, scattered fault lines and rivers full of water, development of human settlements in the study area faces many constraints. Therefore, it is necessary to plan urban development in the study area based on the geomorphological situation of the region. Accordingly, the present study seeks to evaluate the trend of changes occurred from 1992 to 2017 in the residential districts of Marivan. It also aims to determine the extent of urban growth towards areas facing geomorphological hazards, and finally to predict this trend for 2035.
 
Materials and Methods
The present study takes advantage of an analytical and statistical research method, along with the necessary software. Moreover, it seeks to study the trend of urban development from 1992 to 2017, and also predict the future trend of development for 2035. Thus, satellite images received in June 1992, 2001, 2011, and 2017 are collected. After preprocessing the images, a land use map is extracted based on the situation of the study area in 1992, 2001. 2011 and 2017. Then, based on these maps and using effective variables, a map is produced based on the predictions made for the residential areas in 2035 by LCM model. Modeling and prediction are performed using LCM model in four steps:
1. Examination of Land Use Changes; 2. Mapping Potential Transfer using Markov Chain. 3. Extracting a predictive map. 4. Evaluating the accuracy of prediction. After predicting and extracting a map of residential areas for each time period, distribution of geomorphologic hazards in these areas is evaluated. In fact, development trend of high risk residential areas has been evaluated.
 
Discussion and Results
A large part of the study area is mountainous, and these elevations have somehow limited the development of human settlements. Since the present study seeks to determine the trend of human settlements development in areas facing geomorphological hazards, a map has been extracted for these prohibited areas before evaluating the trend of development. These prohibited areas have been mapped in order to identify hazardous areas, and to evaluate development of residential settlements toward these areas. To prepare this map, multiple criteria have been selected based on the situation in the region and experts’ opinion. Then in accordance with the purpose of this research, an information layer was produced using these criteria. Regarding geomorphology, regions with an altitude of more than 1700 m, slopes of more than 30%, north-south direction of the slope, area within 1000 m radii around fault lines and within 200 m radii around rivers are referred to as prohibited areas. After determining prohibited areas, human settlements in the study area were mapped based on 1992, 2001, 2011, and 2017 information. Then, trend of settlement development in prohibited areas was estimated and projected for 2035.
 
Conclusion
Based on the evaluation of results, there is an increasing demographic trend from 1992 to 2017, so that residential area has increased from 7.8 km in 1992 to 10.9 km in 2017. Maximum development occurred from 2001 to 2011. During this period, settlements developed 3.6 km2 and reached around 14.5 km2 in 2011. From 2011 to 2017, settlements area reached 16.6 km2. Apart from the increasing trend of development in residential areas during these years, this development has mostly occurred toward hazardous areas. So that in 1992, around 1.7 km2 of total residential area was located in prohibited areas, most of which included steeped areas and rivers’ border lines. In 2001 and 2011, this trend has increased from 2.3 to 2.9 km2, and reached 3.3 km2 in 2017. Considering the increasing trend of population toward Marivan, increased constructions in peri-urban and rural areas of Marivan and also along the main road of this city, development of settlements toward prohibited areas has mostly occurred in these areas. According to the main purpose of the present research, development of residential areas is projected for 2035 based on land use in pre-specified years. Results indicate that total area of settlements will increase to about 24.3 km2 in 2035, about 5.7 km2 of which will be in prohibited areas.

کلیدواژه‌ها [English]

  • Marivan
  • development
  • Settlement
  • LCM

1 - زیاری، آروین، رحیم‌پور، تقوی زیوانی؛ کرامت اله، محمود، نگار، اسماعیل (1395)، ارزیابی تناسب اراضی به‌منظور توسعه شهری با رویکرد آمایش سرزمین (مطالعه موردی: شهر اهواز)، مجله جغرافیا و توسعه، شماره 47، صص 36-17.

2 - سازمان هواشناسی استان کردستان، گزارش وضعیت آب و هوای استان، 1391

3 - غلامعلی فرد، جورابچیان شوشتری، کهنوج، میرزایی؛ مهدی، شریف، حمزه، محسن (1391)، مدلسازی تغییرات کاربری اراضی سواحل مازندران با استفاده از LCM در محیط GID، فصلنامه محیط‌شناسی، شماره 9، صص 124-109.

4 - قنواتی، دلفانی­ گودرزی؛ عزت‌­اله، فاطمه (1392)، مکان­یابی بهینه توسعه شهری با تأکید بر پارامترهای طبیعی با استفاده از مدل تلفیقی منطق فازی و  AHP­، دو فصلنامه ژئومورفولوژی کاربردی، سال اول، شماره 1، صص 60-45

5 - محمدی،  امیری، دستورانی؛ مجید، مجتبی، جعفر (1394)، مدل‌سازی تغییرات کاربری اراضی شهرستان رامیان در استان گلستان، برنامه‌ریزی و آمایش فضا، دوره نوزدهم، شماره 4.

6 - یمانی، گنجائیان، امانی؛ مجتبی، حمید، خبات (1396)، چالش‌­های محیطی توسعه نواحی سکونتگاهی (مطالعه موردی: شهر پاوه)، پنجمین همایش ملی انجمن ایرانی ژئومورفولوژی، مهر 96، مشهد.

7 - یوسفی، اشرفی؛ مریم، علی (1394)، مدل‌سازی رشد شهری بجنورد با استفاده از داده­‌های سنجش از دور (براساس شبکه عصبی مارکوف و مدل‌ساز تغییرات زمین)، فصلنامه برنامه­‌ریزی منطقه­‌ای، سال 6، شمارة پیاپی 1.

8 - فریدونی کردستانی، مژده (1395)، ارزیابی ژئومورفولوژیکی تناسب زمین برای گسترش کالبدی شهر مریوان، پایان‌نامه کارشناسی ارشد، دانشگاه خوارزمی، دانشکده جغرافیا.

9. Dutta‚ V. (2012)‚ War on the Dream‚ How Land use Dynamics and Peri-urban Growth Characteristics of a Sprawling City Devour the Master Plan and Urban Suitability‚ A Fuzzy Multi-criteria Decision Making Approach‚ proceeded In 13th Global Development Conference“Urbanisation and Development: Delving Deeper into the Nexus”‚Budapest‚hungary.

10. Eastman,J. R. (2006). IDRISI Andes. Guide to GIS and Image Processing. Clark Labs, Clark University, Worcester, MA.

11. Gilbert & Gagler, (1996), Urbanism development of Third World, Translate by Parvize Karimi Naseri, Tehran, General management Tehran

12. Han, Y., & Jia, H. (2016). Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China. Ecological Modelling.

13. Hough, M. (1990), oit of place restoring edentity the regional landscap, Yale college

14. Jha, K.‚ Miner‚ W. Geddes‚ S. (2012)‚ Building urban resilience: principles, tools, and practice‚ The world Bank ‚ pp. 155.

15. Jiang, L., Deng, X., Seto, K.C., (2013), The impact of urban expansion on agricultural landuse intensity in China, Journal of Land Use Policy, No. 35, Pp. 33–39.

16. Keenan, J. M., Wilson, L., & Hsieh, M. (2016). Using design technology to explore the implications of the New York City zoning amendment for quality and affordability. Architectural Science Review, 59(6), 496-506.

17. Khoi,D.D., Y.,Murayama., (2010). Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam. Remote Sensing 2 (5), 1249–1272

18. Linkie,M., R.J., Smith, N.,Leader-Williams (2004), Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodiversity and Conservation 13 (10), 1809-1818.

19. Lu, D., Mausel, P., Brondi´zio, E. and Moran, E (2004), Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2407.

20. Marynouni Gresswell.R.E., (2013). Spatoal and temporal patterns of debrise-flow deposition in the Oregoncoast ange,U.S.A,geomorphology, vol.57,p59-70

21. Merwe, J ( 2004), Gis- aided land evaluation and decision-making for regulating urbanexpansion: A South Africa case study, volume 43, number 2, pages 135- 15

22. Roy, H.G. Fox, D.M. and. Emsellem, K (2014): Predicting Land Cover Change in a Mediterranean Catchment at Different Time Scales. Lect Notes Comput Sc Springer. 5, pp: 315-330, [doi: 10.1007/978-3-319-09147-1_23].

23. Silveira, E. & Penna (2005), An agent based-model ruralurban migration analysis. arXiv: physics/0506021vl, 2June2005

24. Sun,H., W.,Forsythe, Waters, N (2007), Modeling Urban Land Use Change and Urban Sprawl: Calgary, Alberta, Canada. Networks and Spatial Economics 7 (4), 353-376.