Document Type : Research Paper

Authors

1 Assistant professor climatology, Shahid Beheshti University, Tehran, Iran

2 Professor of climatology, Shahid Beheshti University, Tehran, Iran

3 R ms.student in environmental weather

Abstract

Introduction
Foehn is thedecending of hot and dry air that occurs under certain conditions in the lee of a mountain range.In an adiabatic process, the humid air rises toward mountain peaks on the windward hillside. With sufficient humidity, it is saturated and thus, forms clouds or precipitation. In this way, it loses moisture, and passing over the lee of maintain, descends and heat upin an adiabatic process. Thus, the air in the lee side gets warmer and drier than the air in the windward hillside. Moving upward toward the mountain peak, the air loses temperature. At the mountain peak, the saturated air hasreached dew point temperature, and begins to rain to discharge its moisture. This dry air descends, and cross the leeward hillside with increasing velocity, and at the base of the mountain, its temperature is higher than the initial air temperature (Haji Mohammadi, 1396).
 
Data& Methods
In order to extract the frequency of days with foehn windsin the present study, daily temperature, relative and hourly humidity and wind speed were prepared for a 10-year statistical period (2015-2006) and then heat wave index was used to extract the number of days with foehn winds. To investigate the effect of foehn on thermal stress of plants using Landsat 8 OLI images, factors affecting thermal stress inplants,such as albedo, short wavelength radiations reaching the Earth surface, long wavelengthradiations emitted from the Earth surface, long wavelength radiations entering the earth surface, net radiation flux and soil heat flux were analyzed. ENVI 5.3 and Arc GIS 10.1 wereused to perform calculations and produce the aforementioned maps.
 
Results&Discussion
 The present study was conducted to investigate thefoehn phenomenon in the west Alborz Mountains and its effect on the amount of thermal stress in the vegetation cover.First, the frequency of foehn wind occurrence in the statistical period of 2006 to 2015, in stations under study was extracted using wind direction, baldiindex (heat wave index) and increasing temperature and decreasing relative humidity compared to the previous day. In other words, days with temperature higher than 0 degree Celsius were considered as a heat wave. Based on wind direction, temperature increase and relative humidity decrease compared to the previous day (which in some cases is twice or even more), days are associated with foehn wind. In order to investigate the effect of foehn on thermal stressin plants, a sample of images with better atmospheric conditions (lacking clouds) collected by Landsat 8 OLI sensor on September 24, 2015 –in which foehn phenomenon had taken place-was received from the website of US Geological Survey (Earth Explorer)in the present study.The study area (West Alborz Mountains) was selected and cut out ofthese images and radiometric corrections were performed on the resulting images using ENVI 5.3 software. Afterwards, parameters like atmospheric thickness (atmospheric conductivity), Top of AtmosphereAlbedo, Earth’s surface albedo, Earthdistancefrom the Sun, solar altitude, Normalized difference vegetation index (NDVI), leaf area index (LAI), Fracture value, brightness temperature, ground surface temperature were determined and net radiation flux reaching vegetation cover and soil heat fluxwere calculated using these parameters. The output maps were produced in ARCGIS 10.1 environment.
 
Conclusion
According to the study sample (September 4, 2015), results indicated that areas with dense forest cover (eastern hillsides of the Alborz Range) receives the highest values of net radiation.The effect of foehn infiltration on these hillsides has increased the amount of radiation received up to 600 or 700 W / m 2. In contrast, the net radiation received on the downstream of thewindwardhillsides (western hillsides) is about 75 and at higher altitudes 150 W / m 2less than areas under the influence offoehn.Due to lower vegetation densityand lower heat transfer,soil heat flux in the western hillsides is much higher than the eastern hillsides.Most of windward hillsides has a heat flux of between 80 and 120 W / m2, while in leeward hillsides,sunlight is absorbed by the canopy and the soil heat flux is between 20 and 40 W / m2.Thus, most of solar radiation is used to raise the temperature around the vegetation crown, provide the necessary conditions for higher evaporation from the vegetation and create thermal stressin the vegetation organs. Therefore, descending of air mass on trees and plants causes severe evapotranspiration.This will lead to rapid drying of the leaves, which will cause thermal stress in the plant’s organs and intensify the likelihood of forest fires.

Keywords

1. رحیمی، د.، خادمی، س. 1397. تحلیل الگوهای همدید خطر آتش‌سوزی در جنگل‌های شمال ایران(استان گلستان)، مجله مخاطرات محیط طبیعی،7 (17): 36-19.
2. رنجبر سعادت آبادی،ع.، پور میرزا،ج. 1394.مطالعه هواشناختی پدیده گرمباد در استان گیلان. نشریه جغرافیا و توسعه، (40):90-69.
3. صلاحی، ب.،عالی جهان. 1395. واکاوی همدید علل ترمودینامیکی آتش سوزی جنگل های شهرستان دزفول. جغرافیا و مخاطرات محیطی، 5(2): 85-65‎.
4 .عزیزی، ق.،یوسفی، ی. 1388. گرمباد(فون) و آتش‌سوزی جنگل در استان‌های مازندران و گیلان. فصلنامه تحقیقات جغرافیایی، 1(92): 28-3.
5. عزیزی، ق.، برزو،ف.، علیجانی، ب. 1391. واکاوی همدید آتش‌سوزی در جنگل‌های شمالی ایران مورد: استان‌های گیلان و گلستان ، 16(3): 98-79.
6. علیزاده، ا.، کمالی، غ.، موسوی، ف.، موسوی بایگی،م. 1379. هوا و اقلیم شناسی، انتشارات دانشگاه فردوسی مشهد،چاپ پنجم.
7. قمرنیا، ه.، رضوانی، و. 1392. محاسبه و پهنه بندی تبخیر-تعرق با استفاده از الگوریتم سبال(Sebal) در غرب ایران(دشت میان دربند). نشریه آب و خاک(علوم و صنایع کشاورزی)، (1): 81-72.
8 .گلوانی،ف.، لشکری،ح. 1390. تحلیل و پیش‌بینی نقش باد فون بر آتش سوزی جنگل‌های استان گیلان. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی «سپهر»،20(79): 36-31.
9. محمدی، ح.، یلمه، ا. 1392. تحلیل آماری-همدید آتش‌سوزی جنگل در استان گلستان مطالعة موردی روزهای 25 آذر و 18 بهمن 1384. نشریة پژوهش‌های اقلیم‌شناسی ، 80-63.
10. مؤمن‌پور، ف.، فریدمجتهدی، ن.، هادی‌نژادصبوری، ش.، عابد، ح.، نگاه، س. 1393. سازوکار نگاره‌گیری باد گرمش در البرز. نشریه تحلیل فضایی مخاطرات محیطی، 1 (4): 123-105.
 
11. Bastiaanssen, W.G., 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of hydrology, 229(1-2), 87-100.
12. Falarz, M., 2007. Snow cover variability in Poland in relation to the macro and mesoscale atmospheric circulation in the twentieth century. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(15), 2069-2081.
13. Field, T.S. and Hill, M.D., 2002. Weather, Chinook, and stroke occurrence. STROKE-DALLAS-, 33(7), 1751-1756.
14. Flannigan, M.D., Stocks, B.J. and Wotton, B.M., 2000. Climate change and forest fires. Science of the total environment, 262(3), 221-229.
15. Gaffin, D.M., 2009. On high winds and foehn warming associated with mountain-wave events in the western foothills of the southern Appalachian Mountains. Weather and forecasting, 24(1), 53-75.
16. Ghamarnea, H., Rezvani, S.V., 1392. Evaluation and zonation of evapotranspiration using Sebal algorithm in western Iran, Journal of Water and Soil (Agricultural Science and Technology), (1), 72-81.
17. Gohm, A. and Mayr, G.J., 2004. Hydraulic aspects of föhn winds in an Alpine valley. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 130(597), 449-480.
18. Gohm, A., Zangl, G. and Mayr, G.J., 2004. South foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): Verification of high-resolution numerical simulations with observations. Monthly weather review, 132(1), 78-102.
19. Groisman, P.Y., Sherstyukov, B.G., Razuvaev, V.N., Knight, R.W., Enloe, J.G., Stroumentova, N.S., Whitfield, P.H., Førland, E., Hannsen-Bauer, I., Tuomenvirta, H. and Aleksandersson, H., 2006. Potential forest fire danger over Northern Eurasia: changes during the 20th century. Global and planetary change, 56(3-4), 371-386.
20. Inaba, H., Kawamura, R., Kayahara, T. and Ueda, H., 2002. Extraordinary persistence of foehn observed in the Hokuriku district of Japan in the 1999 summer. Journal of the Meteorological Society of Japan. Ser. II, 80(4), 579-594.
21.  Institute of Meteorology and Physics, University of Agricultural Sciences., 1999. South foehn and ozone in the Eastern Alps case study and climatological aspects. Atmospheric Environment, 34 (2000), 1379-1394.
22. Jaiswal, R.K., Mukherjee, S., Raju, K.D. and Saxena, R., 2002. Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4(1), 1-10.
23. Kilpelainen, A., Kellomäki, S., Strandman, H. and Venäläinen, A., 2010. Climate change impacts on forest fire potential in boreal conditions in Finland. Climatic Change, 103(3-4), 383-398.
24. Kishcha, P., Starobinets, B., Savir, A., Alpert, P. and Kaplan, M., 2018. Foehn-induced effects on local dust pollution, frontal clouds and solar radiation in the Dead Sea valley. Meteorology and Atmospheric Physics, 130(3), 295-309.
25. Ma, H., Shao, H. and Song, J., 2014. Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs. Meteorology and Atmospheric Physics, 123(3-4), 105-114.
26.  Mofidi, A., Soltanzadeh, I., Yousefi, Y., Zarrin, A., Soltani, M., Samakosh, J.M., Azizi, G. and Miller, S.T., 2015. Modeling the exceptional south Foehn event (Garmij) over the Alborz Mountains during the extreme forest fire of December 2005. Natural Hazards, 75(3), 2489-2518.
27.  Pereira, M.G., Trigo, R.M., da Camara, C.C., Pereira, J.M. and Leite, S.M., 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129(1-2), 11-25.
28. Piringer, M., Baumann, K., Pechinger, U. and Vogt, S., 2001. Meteorological and ozone sounding experience during a strong foehn event–a MAP case study. Meteorologische Zeitschrift, 10(6), 445-455.
29. Seibert, P., 1990. South foehn studies since the ALPEX experiment. Meteorology and Atmospheric Physics, 43(1-4), 91-103.
30.  Speirs, J.C., McGowan, H.A., Steinhoff, D.F. and Bromwich, D.H., 2013. Regional climate variability driven by foehn winds in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 33(4), 945-958.
31. Sprenger, M. and Schär, C., 2001. Rotational aspects of stratified gap flows and shallow föhn. Quarterly Journal of the Royal Meteorological Society, 127(571), 161-187.
32. Wada, H., Nonami, H., Yabuoshi, Y., Maruyama, A., Tanaka, A., Wakamatsu, K., Sumi, T., Wakiyama, Y., Ohuchida, M. and Morita, S., 2011. Increased ring-shaped chalkiness and osmotic adjustment when growing rice grains under foehn-induced dry wind condition. Crop science, 51(4), 1703-1715.
33. Wastl, C., Schunk, C., Leuchner, M., Pezzatti, G.B. and Menzel, A., 2012. Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agricultural and Forest Meteorology, 1621-13.
34. Waters, R., Allen, R.G., Bastiaanssen, W.G.M., Tasumi, M. and Trezza, R., 2002. SEBAL Surface Energy Balance Algorithms for Land Idaho Implementation Advanced Training and Users Manual. Version 1.0.
35. WMO., 1992. International Meteorological Vocabulary World Meteorological Organization Geneva Switzerland, 784 .
36. Yang, X., Tang, G., Zhang, W. and Zhu, S., 2011. Accuracy assessment of ASTER GDEM in North Shaanxi. In Advances in Cartography and GIScience. Volume. Springer, Berlin, Heidelberg, (2 ), 371-382.
37. Zangl, G., 2002. Idealized numerical simulations of shallow föhn. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 128(580), 431-450.
38. Zumbrunnen, T., Pezzatti, G.B., Menéndez, P., Bugmann, H., Bürgi, M. and Conedera, M., 2011. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. Forest Ecology and Management, 261(12), 2188-2199.