Document Type : Research Paper


1 Prof. Faculty of planning& environmental sciences, University of Tabriz

2 MSc. Graduated of Remote Sensing and Geographical Information System, University of Tabriz



Extended Abstract
With their dynamic nature, water resources are essential fortheenvironment and play a vital role in human life, development of communities, and climate change. Water bodies have been declining over time due tothe rapid growth of urbanization, excessive abstraction of water, damming, increasing demand for agricultural products, pollution anddegradationofthe environment. Therefore, monitoring water bodies and retrievingrelated information are essential for management of environmental issues and decision making in this field. Accurate recognitionof water bodiesiscrucialin many applied fields, such as environmental monitoring, production of land cover and land use maps, flood risk assessing and monitoring, and drought monitoring.Modern methods such as object-oriented processing take advantage of remote sensing capabilities to make accurate and precise recognition of water bodies possible. Classical methods on the other hand, cannot accurately classify satellite imagery with similar spectral information merging into each other. This reduces the accuracy of pixel-based classification methods. Therefore, object-oriented processing of satellite images is used in the present study to obtain precise maps for the identification of waterbodies.
 Materials and methods
A part of Aji Chai River, near the city of Khajeh in Harris County, has been selected as the study area. The total study area included 28 square kilometers. Based on the aim of the present study, the study area was selected in a way to contain linear features, arable lands, and other topographical and human-madefeatures (shading factor) which interfere with the extraction of water bodies and reduce the classification accuracy. Object oriented methods (the closest neighbor and fuzzy object-oriented methods) were used in the present study to identify and extract water bodies from high resolution images (Sentinel 2A imagery).
 Discussion and results
Different functions used in OBIA techniques,such as GLCMtextual features, average number of bands in the image, geometric information (shape, compression and asymmetry), and normalized difference vegetation index(NDVI) were used in the present studyto precisely extract land cover. Moreover, algorithms with the highest membership degree in the class of water bodies were considered as effective factors in classification. Usual methods of extracting and monitoring water bodies use spectral information of pixels, and therefore, have limited ability in distinguishing water bodies from linear features, such as roads, clouds, shaded regions, and residential areas. These methods also have limited capabilities in mountainous areas, especially when they are required to separate water from snow. In other words, these methods cannot separate water bodies from regions with lower albedo. Therefore, the present study takes advantage of object-oriented methods (the nearest neighbor and fuzzy methods) and evaluate their effectiveness in the extraction of water bodies.
In this study, the nearest neighbor and fuzzy object-oriented methods were used to extract water bodies and their efficiencies were compared. To improve the results in the nearest neighbor method, the separation space between the samples was optimized using the FSO algorithm, then the water bodies were extracted with 95% accuracy and a Kappa coefficient of 93%. Findings of the present studyindicated that this method cannot distinguish water bodies from shaded regions, and linear featuressuch as roads, and residential areas, and categorizes these features as water bodies, which reduces the accuracy of the final results. In the next step, water bodies were once more extracted using object-oriented fuzzy model. In this method, membership degrees were first calculated for each sampleand then applied in the classification procedure. High accuracy of the results of this method (overall accuracy of 98% and a kappa coefficient of 96%) indicated the superiority of this method over the previous one (nearest neighbor). In this method, water bodies are completely distinguished from linear features such as roads, as well as shaded regions, clouds and residential areas. The results of this study can be generalized to other rivers and water bodies. Compared to classical methods, object-oriented methods are more time efficient and accurate.


1. باقری، باقری، سهولی؛ محمدحسین، علی، غلامعباس؛  1395، تحلیل تغییرات پهنه آبی  دریاچه بختگان  تحت تأثیر عوامل طبیعی و انسانی، تحقیقات منابع آب ایران، 12(3)،صفحه 1-11‎.
2. راهداری، ‌‌‌‌‌ملکی، راهداری، محمودی، پورملایی، علیمرادی، آبتین، کدخدایی، پورمنافی؛ وحید، سعیده، میثم، سعید، نیره، محمدرضا، الهام، مهدی، سعید؛  1395، بررسی قابلیت داده ‌های ماهواره ‌ای چند طیفی در تهیه نقشه عمق آب و اراضی مجاور ذخیره ‌گاه ‌های آبی (مطالعه موردی: ذخیره ‌گاه ‌های آبی چاه نیمه های سیستان)، تحقیقات منابع آب ایران، 12 (3)،صفحه 141-130.
3. رسولی، ‌‌‌عباسیان، ‌جهانبخش؛ ‌‌علی‌اکبر، ‌شیرزاد، ‌سعید؛ 1387، پایش نوسان ‌های سطح آب دریاچه ارومیه با پردازش‌ های تصاویر ماهواره ‌ای چند سنجنده و چند زمانه، جغرافیا و برنامه ‌ریزی، 12 (2)،صفحه 71-52.
4. رسولی، محمودزاه؛ علی اکبر،‌ حسن؛ 1389، مبانی سنجش از دور دانش پایه، نشرعلمیران، چاپ اول، تبریز، 192.
5. رضایی مقدم،‌‌‌ محمدفر،‌ ولی‌زاده کامران؛ محمدحسین، عادل، خلیل؛1391،آشکارسازی تغییرات کناری و شناسایی مناطق خطر رودخانه آجی ‌چای د رمحدوده خواجه تاونیار، جغرافیاوبرنامه ریزی، 23 (4)،صفحه 14-1.
6. رضایی ‌مقدم، ‌‌رضایی ‌بنفشه، ‌فیضی ‌زاده، نظم ‌فر؛ محمدحسین، مجید، بختیار، حسین؛ 1389، طبقه ‌بندی پوشش اراضی/کاربری اراضی براساس تکنیک شئ ‌گرا و تصاویر ماهواره‌ای،‌ مطالعه موردی: استان آذربایجان غربی، پژوهش ‌های آبخیزداری، 23 (4)،صفحه 32- 19.
7. علوی ‌پناه،‌ گودرزی، ‌خاکباز؛ ‌سید‌کاظم، ‌سعید، ‌باهره؛  1390، تکنولوژی سنجش از دور حرارتی و کاربرد آن در شناسایی پدیده‌ ها، نشریه علم،  2(1)، صفحه 25-29.
8. گمشادزایی، ‌رحیم زادگان؛ محمدحسین، مجید؛ 1394، تعیین سطح پهنه ‌های آبی با بکارگیری تصاویر ماهواره ‌ای و اعمال شاخص ‌های طیفی،  دومین همایش ملی راهکارهای پیشروی بحران آب در ایران و خاورمیانه.
9. مجیدی ‌خلیل‌آباد، علیزاده، حسینی، ‌وظیفه دوست؛ ...، امین، فرید، مجید؛ 1397، برآورد تبخیر از مخزن سد دوستی با توسعه و کاربرد روشی جدید مبتنی بر بیلان انرژی،  مهندسی عمران، 13(2)، صفحه 154-169.‎
10. ملکی، ‌سفیانیان، سلطانی کوپایی، پورمنافی، شیخ الاسلام؛ سعیده،علیرضا، سعید، سعید،‌ فرید؛‌1397،‌‌ تحلیل‌الگوی تغییرات پهنه آبی تالاب هامون در دوره آبگیری سالیانه و تغییرات کاربری و پوشش اراضی منطقه14 (1)، صفحه 225-216.
11. Baatz, M., Hoffmann, C., &Willhauck, G. (2008). Progressing from object-based to object-oriented image analysis. Object-Based Image Analysis, 29-42.
12. Baatz, M., Hoffmann, C., &Willhauck, G. (2008). Progressing from object-based to object-oriented image analysis.In Object-Based Image Analysis (pp. 29-42).Springer, Berlin, Heidelberg.
13. Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., &Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of photogrammetry Photogrammetry and remote RemotesensingSensing, 58(3), 239-258.
14. Bhagat, V. S., &Sonawane, K. R. (2011). Use of Landsat ETM+ data for delineation of water bodies in hilly zones. Journal of Hydroinformatics, 13(4), 661-671.
15. Chaudhuri, B. B., & Sarkar, N. (1995). Texture segmentation using fractal dimension. IEEE transactions on pattern analysis and machine intelligence, 17(1), 72-77.
16. Chaudhuri, B. B., & Sarkar, N. (1995). Texture segmentation using fractal dimension. IEEE Transactions on pattern analysis and machine intelligence, 17(1), 72-77.
17. Chen, M., Su, W., Li, L., Zhang, C., Yue, A., & Li, H. (2009). Comparison of pixel-based and object-oriented knowledge-based classification methods using SPOT5 imagery. WSEAS Transactions on Information Science and Applications, 6(3), 477-489.
18. Drăguţ, L., &Blaschke, T. (2006). Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3), 330-344.
19. Fassnacht, F. E., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P., & Koch, B. (2014). Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154, 102-114.
20. Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23-35.
21. Jawak, S. D., & Luis, A. J. (2015). A rapid extraction of water body features from antarctic coastal oasis using very high-resolution satellite remote sensing data. Aquatic Procedia, 4, 125-132.
22. Kaplan, G., &Avdan, U. (2017). Object-based water body extraction model using Sentinel-2 satellite imagery. European Journal of Remote Sensing, 50(1), 137-143.
23. Ko, B. C., Kim, H. H., & Nam, J. Y. (2015). Classification of potential water bodies using Landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors, 15(6), 13763-13777.
24. Li, B., Zhang, H., & Xu, F. (2014). Water extraction in high resolution remote sensing image based on hierarchical spectrum and shape features. In IOP Conference Series: Earth and Environmental Science (Vol. 17, No. 1, p. 012123). IOP Publishing.
25. Mondejar, J. P., &Tongco, A. F. (2019). Near infrared band of Landsat 8 as water index: a case study around Cordova and Lapu-Lapu City, Cebu, Philippines. Sustainable Environment Research, 29(1), 16.
26. Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., &Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote sensing of environment, 115(5), 1145-1161.
27. Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., &Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5), 1145-1161.
28. Navulur, K. (2006). Multispectral image analysis using the object-oriented paradigm.CRC press.
29. Niemczynowicz, J. (1999). Urban hydrology and water management–present and future challenges. Urban waterWater, 1(1), 1-14.
30. Rouse Jr, J., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS.
31. Senaras, C., Gedik, E., &Yardimci, Y. (2014, July). A novel dynamic thresholding and categorizing approach to extract water objects from VHR satellite images. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International (pp. 4934-4937). IEEE.
32. Szuster, B. W., Chen, Q., & Borger, M. (2011). A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2), 525-532.
33. Varis, O., &Vakkilainen, P. (2001). China’s 8 challenges to water resources management in the first quarter of the 21st Century. Geomorphology, 41(2), 93-104.
34. Wang, Y., Huang, F., & Wei, Y. (2013, June). Water body extraction from LANDSAT ETM+ image using MNDWI and KT transformation.In Geoinformatics (GEOINFORMATICS), 2013 21st International Conference on (pp. 1-5).IEEE.
35. Wijaya, A., Budiharto, R. S., Tosiani, A., Murdiyarso, D., &Verchot, L. V. (2015). Assessment of large scale land cover change classifications and drivers of deforestation in Indonesia. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 557.
36. Yan, G. (2003, March). Pixel based and object oriented image analysis for coal fire research. ITC.
37. Yang, L., Tian, S., Yu, L., Ye, F., Qian, J., & Qian, Y. (2015). Deep learning for extracting water body from Landsat imagery. International Journal of Innovative Computing, Information and Control, 11(6).
38. Yang, Y., Liu, Y., Zhou, M., Zhang, S., Zhan, W., Sun, C., &Duan, Y. (2015). Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sensing of Environment, 171, 14-32.
39. Zhang, Y., & Maxwell, T. (2006, May). A fuzzy logic approach to supervised segmentation for object-oriented classification. In ASPRS 2006 Annual Conference Reno, Nevada May (pp. 1-5).
40. Zhang, Y., Liu, X., Zhang, Y., Ling, X., & Huang, X. (2018). Automatic and Unsupervised Water Body Extraction Based on Spectral-Spatial Features Using GF-1 Satellite Imagery. IEEE Geoscience and Remote Sensing Letters, 16(6), 927-931.