Document Type : Research Paper

Author

Associate Professor of Farabi University of Science and Technology

Abstract

Extended Abstract
Introduction
Gradual changes in climate systems and patterns such as temperature, humidity, cloudiness, and wind and precipitation patterns affect type of climate in different areas. The climate of lagoons is especially sensitive and easily affected by climate changes. Critical ecosystems of lagoons protect biodiversity and have various tourism, economical, ecological, environmental and social values. Located in JazMurian basin, JazMurian wetland is frequently affected by wet years and droughts. However, repeated droughts and loss of freshwater have resulted in the wetland drying out. The dried out water body not only affects plant and animal life, but also acts as a dust emission center.
Material and Methods
Three scenarios of emission (A2, A1B, B1) in medium-term (2046-2065) and long-term (2080-2100) are used in the present study to evaluate climate changes in JazMurian basin. Related data have been collected from Iranshahr synoptic station in the east and JiroftMianDeh in the west during 1990-2010 statistical period. The output of HADCM3 model has been downscaled using LARS-WG statistical model and minimum/maximum temperature, and monthly precipitation of the synoptic stations were analyzed.
Discussion
Evaluation of LARS-WG model proved that monthly and annual average of minimum and maximum temperature in all modeling scenarios are higher than the observation period. The highest and lowest temperature increase will occur in A2 (business as usual) and B1 (the most environmental) scenarios. The highest increase in monthly average of maximum temperature will occur in Iranshahr station during the long-term A2 scenario (4.3 for maximum temperature in April and 4.6 for minimum temperature in May). In Iranshahr station, the highest increase in monthly average of maximum temperature predicted for the medium-term A2 scenario will equal 2.5 ° in April. In both scenarios, the lowest increase in monthly average of maximum temperature in Iranshahr will occur in October.
According to all scenarios, precipitation will decrease in January and December. An increase in precipitation is recorded during March and October in Iranshahr station, and during February in Jiroft. Thus, changes will mainly occur in Mediterranean winter precipitation in the study area, while negligible changes will occur in monsoon precipitation during summer. Precipitation modeling shows higher precipitation fluctuation in long-term scenario compared to the basic statistical period. Long-term A 1B and B1 scenarios have predicted a small increase in precipitation of both stations compared to the basic statistical period. A2 scenario has shown a small decrease in precipitation during the same period. Modelling based on B1 scenario has indicated that the region will experience a higher increase in precipitation in long-term future (2080-2100) compared to the medium-term future (2046-2065), while the other two scenarios have predicted a lower increase in precipitation of the same period. Medium-term B1 scenario has predicted a lower annual precipitation average compared to the observation period. Results indicated that in accordance with the B1 scenario, Iran will experience the lowest level of precipitation during the 21 century in the medium-term period.
Conclusion
Investigating various meteorological parameters in western and eastern borders of JazMorian basin has predicted 1.5° to 2.1° increase in average temperature during the future 50 years, and 2.4° to 3.9° increase in average temperature during the future 100 years. Moreover, results indicated that changes will mostly occur in winter precipitation, and summer time changes will be negligible. All things considered, all scenarios have predicted lower precipitation for eastern parts of JazMurian compared to the western parts.

Keywords

Main Subjects

1- ارجمند، راشکی، سرگزی؛ مریم، علیرضا، حسین (1397)، پایش زمانی و مکانی پدیده گرد  وغبار با استفاده از داده‌ های ماهواره‌ ای در جنوب ‌شرق ایران، با تأکید بر منطقه جازموریان، اطلاعات جغرافیایی (سپهر)، دوره 27، شماره 106، شماره پیاپی 106، صص 168-153.
2- خردادی، علیزاده، نصیری‌ محلاتی، هوشمند؛ محمدجواد، امین، مهدی، دل‌ آرام (1392)، ارزیابی اثر تغییر اقلیم بر پارامترهای اقلیمی و دوره ‌های خشک و تر در صد سال آتی با تلفیق روش‌ های وزن ‌دهی عکس فاصله و عامل تغییر (مطالعه موردی: زیرحوضه تهران - کرج)، جغرافیا و توسعه ناحیه‌ ای، شماره بیست‌ و یکم، صص 178-157.
3- دانش افروز، رزاق ‌پور؛ رسول، هادی  (1393)، ارزیابی اثرات تغییر اقلیم بر تبخیر و تعرق پتانسیل در استان آذربایجان غربی، فصلنامه فضای جغرافیایی، شماره 46، ص211-199.
4- راهداری، و. ملکی، س. راهداری، م. پاک نیت، د  (1393)، تهیه نقشه پایه منابع اکولوژیک تالاب جازموریان و معرفی آن به ‌عنوان یکی از مناطق تحت حفاظت سازمان محیط ‌زیست با استفاده از RS و GIS، طرح تحقیقاتی، اداره کل حفاظت محیط زیست استان سیستان و بلوچستان.
5- رضایی بنفشه، جلالی عنصرودی، حسن ‌پور اقدم بگلو؛ مجید، طاهره، محمدعلی (1397)، بررسی تأثیر تغییر اقلیم ب رتغییرات زمانی تعذیه آب زیرزمینی حوضه آبریز تسوج، فضای جغرافیایی، سال هجدهم، شماره 61، صص 269-255.
6- عباسی، باباییان، ملبوسی، اثمری، مختاری؛ فاطمه، ایمان، شراره، مرتضی، لیلی گلی (1391)،ارزیابی تغییر اقلیم ایران در دهه‌ های آینده  (2025 تا 2100 میلادی) با استفاده از ریزمقیاس نمایی داده ‌های مدل گردش عمومی جو، تحقیقات جغرافیایی، دوره 27، شماره 1، صص 230-205.
7- Change, I.P. on C., (2015), Climate change 2014: mitigation of climate change. Cambridge University Press.
8- Haris, A.A., Khan, M.A., Chhabra, V., Biswas, S. and Pratap, A., (2010), Evaluation of LARS-WG for generating long term data for assessment of climate change impact in Bihar.
9- Jana, B. K., & Majumder, M. (Eds.). (2010), Impact of climate change on natural resource management. Springer Science & Business Media.
10- Khalifa, E. M. (2016), Conscious study of impact of dust storm on aviation and airport management. International Journal of Science Research and Technology, 2(2), 51-57.
11- Luo, Q. and Yu, Q., (2012), Developing higher resolution climate change scenarios for agricultural risk assessment: progress, challenges and prospects. International journal of biometeorology, 56, 557-568.
12- Ma M, Baskin CC, Yu K, Ma Z, Du G (2017), Wetland drying indirectly influences plant community and seed bank diversity through soil PH. Ecological Indicators. 80:186-195
13- Montgomery, D.C., Runger, G.C., (2010), Applied statistics and probability for engineers. John Wiley & Sons.
14- Morzaria-Luna, H. N., Castillo-Lopez, A., Danemann, G. D., & Turk-Boyer, P. (2014), Conservation strategies for coastal wetlands in the Gulf of California, Mexico. Wetlands ecology and management, 22(3), 267-288.
15- Navedo, J. G., & Herrera, A. G. (2012), Effects of recreational disturbance on tidal wetlands: supporting the importance of undisturbed roosting sites for waterbird conservation. Journal of Coastal Conservation, 16(3), 373-381.
16- Osman, Y., Al-Ansari, N., Adbellatif, M., Al-Jawad, S. and Knutsson, S., (2014), Expected future precipitation in central Iraq using LARS-WG stochastic weather generator. Engineering, 6, 948-959.
17- Sayemuzzaman, M. and Jha, M.K., (2014), Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmospheric Research, 137, 183-194.
18- Shen, H., Abuduwaili, J., Ma, L., & Samat, A. (2019), Remote sensing-based land surface change identification and prediction in the Aral Sea bed, Central Asia. International Journal of Environmental Science and Technology, 16(4), Pp. 2031-2046.
19- Tayebiyan, A., Ali, T.A.M., Ghazali, A.H. and Malek, M.A., (2014), November. Future Consequences of Global Warming on Temperature and Precipitation at Ringlet Reservoir, Malaysia. In Int’l Conference on Advances in Environment, Agriculture & Medical Sciences (ICAEAM’14), Kuala Lumpur, Pp. 56-60.
20- Zou, Z., Dong, J., Menarguez, M. A., Xiao, X., Qin, Y., Doughty, R. B., ... & Hambright, K. D. (2017). Continued decrease of open surface water body area in Oklahoma during 1984 – 2015. Science of the Total Environment, 595, Pp. 451-460.