Document Type : Research Paper

Authors

1 Senior expert in remote sensing and geographic information system (GIS), water and soil studies, faculty of human sciences, department of geography, Hormozgan University

2 کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی(GIS) گرایش مطالعات آب و خاک دانشکده علوم انسانی گروه جغرافیا دانشگاه هرمزگان

Abstract

Extended Abstract
Introduction
Coral reefs are one of the most diverse and ecologically important areas in the world. However, with increasing ocean temperatures, many coral reefs are severely threatened by bleaching events. When the water is too warm, corals expel the algae that live in their tissues, causing the coral to turn completely white. When a coral bleaches, it is not dead, and corals can survive a bleaching event, but they are more stressed and at risk of dying. Today, in order to predict and identify areas at risk of coral bleaching, data based on satellite remote sensing are used. In this research, using 35-year data trends, the sea surface temperature in 2022 was predicted using ArcGIS Pro tools for the Persian Gulf area and possible areas exposed to thermal stress leading to coral bleaching were identified.
Materials & Methods
 In order to predict the bleaching of corals, the research data archive of the American National Center for Atmospheric Research (NCAR) has been used. In this analysis, the harmonic method was used to fit the trend line. A harmonic trendline is a periodically repeating curved line that is best used to describe data that follows a cyclical pattern. For anomaly analysis parameters, the average monthly temperature in each location was compared with the overall average temperature to identify anomalies. There are three mathematical methods for calculating anomaly values with the Anomaly function, in this research, the method of difference From mean was used. At the end, the dimension value or band index was extracted, in which a certain statistic is obtained for each pixel in a multi-dimensional or multi-band raster, and the final map of coral bleaching prediction was prepared, and then using the data and global maps of the National Oceanic Administration NOAA , it was evaluated.
Results, discussion and conclusion
The preliminary results showed that the sea surface temperature has changed in the Persian Gulf. The range has experienced higher average temperatures since 1996, which could put the area at risk of coral bleaching. The minimum average temperature in the studied time period is 298.758 degrees Kelvin in 1991 and the maximum average temperature in 1399 is 300.737 degrees Kelvin. The parameters that were chosen for multidimensional data trend analysis include water surface temperature variable (SST) and time dimension. The obtained trend map (1980-2015) indicated that the northwestern regions of the Persian Gulf and a part of its south are more exposed to prolonged heat. In this study, frequency parameter 2 was used in the harmonic model, which uses the combination of the first-order linear harmonic curve and the second-order harmonic curve to fit the data. The accuracy of data trend fitting by harmonic regression function provided statistical parameters, R2=0.78 and RMSE=0.5. The value of R2 indicates that the observed value of sea surface temperature (SST) was predicted by the harmonic regression model by 78% and the rest remains undefined. This value of the determination coefficient confirmed the accuracy of the trend map. Another statistical parameter is the root mean square error, the lower the value, the better the fit. In the obtained results, the mean of this error is 0.5, which shows that the harmonic regression model can accurately predict the data. In this study, forecast data was analyzed to find locations where water temperatures remain warm for extended periods of time. In this context, first, anomalies in the data were calculated, anomaly or anomaly is the deviation of an observed value from its average value, and in the analysis, it shows areas that have a temperature higher than the average. As a result of this step, the anomalies in the data were calculated and the areas with higher temperature than the average were identified. In the predicted annual time frame (2022), the north-west and a part of the south of the Persian Gulf region will face a longer period of high temperature. To evaluate the accuracy of the results obtained from the analysis and the method used in predicting sea surface temperature and identifying anomalies (2022-09-03), they were compared with the maps of Nova organization on the same date and were confirmed. It is suggested that responsible organizations use methods based on remote sensing and trend analysis to assess the situation and prepare a risk map of coral reefs.

Keywords

Main Subjects

1- اژدری‌معموره، گندمکار، کبیری. (2018). استفاده از شاخص دما در پیش‌بینی سفید شدگی جوامع مرجانی نواحی جنوبی و شمالی خلیج‌فارس. تحلیل فضایی مخاطرات محیطی, 19(5), 41-52.‎
2- بلوکی کورنده، ندرلو، خروشی، زنگی‌آبادی. (2021). تنوع گونه‌ای مرجان‌های سخت در آب‌های ایرانی خلیج‌فارس و دریای عمان. علوم و فنون شیلات, 10(2), 173-188.‎
3- پارسا‌پور. 1401، مرکز مطالعات خلیج‌فارس؛ مؤسسه مطالعات ژئوپلیتیک، استراتژیک، تاریخ و جغرافیای خلیج‌فارس،http://www.persiangulfstudies.com/fa/pages/166.
4- ترابی آزاد، محمدی. (2015). مطالعه دمای سطحی آب دریا (SST) و سرعت باد در سواحل استان هرمزگان بر اساس داده‌های ماهواره‌ای. پژوهش‌های علوم و فنون دریایی, 10(3), 81-91.‎
5- جاوید، بهزادی، رنجبر، شریف. (2021). اثر گرمایش جهانی بر سفید شدگی اکوسیستم‌های مرجانی در برخی جزایر خلیج‌فارس. فصلنامه محیط‌زیست جانوری, 13(2), 387-394.‎
6- حلبیان، کبیری، صفرنژاد، شیرانی، مصیب. (2022). بررسی تأثیر تغییرات دمای سطح دریا (SST) بر اکوسیستم‌های مرجانی مطالعه موردی: جزیره کیش. نشریه علمی پژوهشی اقیانوس‌شناسی, 13(50), 59-72.
7- حیدری، نظری‌سامانی، فیض‌نیا، فرزین. (1400)، برآورد دمای سطح آب با استفاده از تصاویر ماهواره‌ای و سنجش‌ازدور در خلیج فارس، هفتمین کنفرانس بین‌المللی کشاورزی، محیط‌زیست، توسعه شهری و روستایی،https://civilica.com/doc/1256640.
8- صنعتگران. (1388). بررسی روند تغییرات دمای سطحی در خلیج فارس، یازدهمین همایش ملی صنایع دریایی ایران.
9- فاضل‌پور، داد الهی، علمی‌زاده، عسگری، خزاعی. (2016). ارزیابی برآورد دمای سطح آب و ارتباط سنجی پارامتر دما با عمق در خلیج‌فارس با استفاده از سنجنده مودیس. مجله علوم و فنون دریایی, 15(2), 130-142.‎
10- قدمی یزدی، مصطفوی، قوام، فاطمی. (1392). بررسی تنوع مرجان‌های سخت آب‌های اطراف جزیره هندورابی- خلیج‌فارس. همایش: علوم جانوران آبزی، دوره برگزاری:1.
11- قوام مصطفوی، دوست سلیمی، اشرفی. (1396). برنامه مدیریت جامع آبسنگ‌های مرجانی جزایر تنب، ابوموسی و سیری از طریق شناسایی گونه‌ای، بررسی وضعیت سلامت و تهیه نقشه پراکنش آن‌ها؛ سازمان حفاظت محیط‌زیست، حوزه معاونت محیط‌زیست دریایی، بخش مرجان‌های خلیج‌فارس، ص 6.
12- کمالی، صمد،1394، تحلیل تغییرات دمای سطح آب خلیج‌فارس نسبت به میانگین بلندمدت در دوره زمانی 2010-2000، اولین همایش علمی پژوهشی افق‌های نوین در علوم جغرافیا و برنامه‌ریزی، معماری و شهرسازی ایران، تهران،https://civilica.com/doc/395391.
13- محمدی روزبهانی، چوبکار. (2010). بررسی عوامل تهدیدکننده اکوسیستم‌های مرجانی و راهکارهای حفاظتی. انسان و محیط‌زیست, 8 (شماره 4 (15-پیاپی 26)), 89-94.‎
 
14- Allemand, D. Osborn, D. 2019. Ocean acidification impacts on coral reefs: From sciences to solutions. Reg. Stud. Marine Sci. 28, 100558 https://doi.org/10.1016/j. rsma.2019.100558.
15- Bruno, J. F. Bates, A. E. Cacciapaglia, C. Pike, E. P. Amstrup, S. C. Van Hooidonk, R. ... & Aronson, R. B. (2018). Climate change threatens the world’s marine protected areas. Nature Climate Change, 8(6), 499-503.
16- Baird, M.E. Green, R. Lowe, R. Mongin, M. Bougeot, E. Optimising cool-water injections to reduce thermal stress on coral reefs of the Great Barrier Reef. PLoS ONE 2020, 15, e0239978. [CrossRef] [PubMed].
17-  Baker, A.C. Glynn, P.W. Riegl, B. 2008. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471.
18- Burt, J. Bartholomew, A. Usseglio, P. 2008. Recovery of corals a decade after a bleaching event in Dubai, United Arab Emirates. Mar. Biol. 154 (1), 27–36.
19- Donner, S. D. (2011). An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events. Ecological Applications, 21(5), 1718-1730.
20- Downs, C.A. McDougall, K.E. Woodley, C.M. Fauth, J.E. Richmond, R.H. Kushmaro, A. Gibb, S.W. Loya, Y. Ostrander, G.K. Kramarsky-Winter, E. 2013. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 8, e77173. doi: 10.1371/journal.pone.0077173.
.21- Epstein, H.E. Smith, H.A. Torda, G. Oppen, M.J.H. 2019. Microbiome engineering: Enhancing climate resilience in corals. Front. Ecol. Environ. 17, 100–108. https:// doi.org/10.1002/fee.2001.
22- Esri,2022,https://www.arcgis.com/home/item.html?id=7d6830191f414d4f9663b1f5d8acaef4
23- Esri, 2022, Generate Trend Raster (Image Analyst), https://pro.arcgis.com/en/pro-app/2.9/tool-reference/image-analyst/generate-trend-raster.htm.
24- Esri, 2022, Generate Multidimensional Anomaly (Image Analyst), https://pro.arcgis.com/en/pro-app/2.8/tool-reference/image-analyst/generate multidimensional-anomaly.htm.
25- França, F. M. Benkwitt, C. E. Peralta, G. Robinson, J. P. Graham, N. A. Tylianakis, J. M. ... & Barlow, J. (2020). Climatic and local stressor interactions threaten tropical forests and coral reefs. Philosophical Transactions of the Royal Society B, 375(1794), 20190116.
26- Ferrier-Pages, C. Sauzeat, L. Balter, V. 2018. Coral bleaching is linked to the capacity of the animal host to supply essential metals to the symbionts. Glob. Chang. Biol. 24, 3145–3157. https://doi.org/10.1111/gcb.14141.
27- Ferreira, B. P. Costa, M. B. S. F. Coxey, M. S. Gaspar, A. L. B. Veleda, D. & Araujo, M. (2013). The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral reefs, 32(2), 441-454.
28- Fulton, C.J. Berkström, C. Wilson, S.K. Abesamis, R.A. Bradley, M. Åkerlund, C. Barrett, L.T. Bucol, A.A. Chacin, D.H. Chong, S.K.M. et al. Macroalgal meadow haitats support fish and fisheries in diverse tropical seascapes. Fish Fish. 2020, 21,700–717.
29- Gardner, S.G. Camp, E.F. Smith, D.J. Kahlke, T. Osman, E.O. Gendron, G. Hume, B.C. C. Pogoreutz, C. Voolstra, C.R. Suggett, D.J. 2019. Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Nino heat wave. Ecol. Evol. 9, 938–956. https://doi.org/10.1002/ece3.4662.
30- Gibson, R. Atkinson, R. Gordon, J. Smith, I. Hughes, D. Coral-associated invertebrates: Diversity, ecological importance and vulnerability to disturbance. In Oceanography and Marine Biology; Taylor & Francis: Oxford, UK, 2011; Volume 49, pp. 43–104.
31- Gilmour, J.P. Smith, L.D. Heyward, A.J. Baird, A.H. Pratchett, M.S. 2013. Recovery of an isolated coral reef system following severe disturbance. Science 340 (6128), 69–71.
32- Glynn, P.W. 2011. In tandem reef coral and cryptic metazoan declines and extinctions. Bull. Mar. Sci. 87, 767–794.
33- Graham, N. A. Robinson, J. P. Smith, S. E. Govinden, R. Gendron, G. & Wilson, S. K. (2020). Changing role of coral reef marine reserves in a warming climate. Nature Communications, 11(1), 1-8.
34- Harborne, A. R., Rogers, A., Bozec, Y. M., & Mumby, P. J. (2017). Multiple stressors and the functioning of coral reefs. Annual Review of Marine Science, 9, 445-468.
35- Heron, S. F. Maynard, J. A. Van Hooidonk, R. & Eakin, C. M. (2016). Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Scientific reports, 6(1), 1-14.
36- Hoegh-Guldberg, O. Pendleton, L. Anne Kaup, A. 2019. People and the changing nature of coral reefs. Reg. Stud. Marine Sci. 30, 100699. https://doi.org/10.1016/j. rsma.2019.100699.
37- Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., ... & Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373-377.
38- Hughes, T.P. Kerry, T. Simpson, T. 2018. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99, 501.
39- IRI/LDEO Climate Data Library, (2022). Monthly Sea Surface Temperature Anomaly.https://iridl.ldeo.columbia.edu/maproom/Global/Ocean_Temp/Anomaly.html.
40- Khosravi, Y. Bahri, A. & Tavakoli, A. (2020). Investigation of Sea Surface Temperature (SST) and its spatial changes in Gulf of Oman for the period of 2003 to 2015. Journal of the Earth and Space Physics, 45(4), 165-179.
41- Kuo, C.Y. Lough, J.M. Lowe, R.J. Liu, G. McCulloch, M.T. Malcolm, H.A. McWilliam, M.J. Pandolfi, J.M. Pears, R.J. Pratchett, M.S. Schoepf, V. Simpson, T. Skirving, W.J. Sommer, B. Torda, G. Wachenfeld, D.R. Willis, B.L. Wilson, S.K. 2017. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707.
42- Kwiatkowski, L. Cox, P. Halloran, P.R. Mumby, P.J.Wiltshire, A.J. Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nat. Clim. Chang. 2015, 5, 777–781. [CrossRef].
43- Lachs, L., Bythell, J. C., East, H. K., Edwards, A. J., Mumby, P. J., Skirving, W. J., ... & Guest, J. R. (2021). Fine-tuning heat stress algorithms to optimise global predictions of mass coral bleaching. Remote Sensing, 13(14), 2677.
44- Lamb, J. B. Wenger, A. S. Devlin, M. J. Ceccarelli, D. M. Williamson, D. H. & Willis, B. L. (2016). Reserves as tools for alleviating impacts of marine disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1689), 20150210.
45- Levin, R.A. Beltran, V.H. Hill, R. Kjelleberg, S. McDougald, D. Steinberg, P.D. van Oppen, M.J. 2016. Sex, scavengers, and chaperones: Transcriptome secrets of divergent Symbiodinium thermal tolerances. Mol. Biol. Evol. 33, 2201–2215. https:// doi.org/10.1093/molbev/msw119.
46- Liu, G. Eakin, C. M. Chen, M. Kumar, A. De La Cour, J. L. Heron, S. F. ... & Strong, A. E. (2018). Predicting heat stress to inform reef management: NOAA coral reef watch’s 4-month coral bleaching outlook. Frontiers in Marine Science, 5, 57.
47- Liu, G. Skirving, W. J. Geiger, E. F. De La Cour, J. L. Marsh, B. L. Heron, S. F. ... & Eakin, C. M. (2017). NOAA Coral Reef Watch’s 5km satellite coral bleaching heat stress monitoring product suite version 3 and four-month outlook version 4. Reef Encounter, 32(1), 39-45.
48- Liu, B. Guan, L. & Chen, H. (2021). Detecting 2020 Coral Bleaching Event in the Northwest Hainan Island Using CoralTemp SST and Sentinel-2B MSI Imagery. Remote Sensing, 13(23), 4948.
49- Loya, Y. Sakai, K. Yamazato, K. Nakano, Y. Sambali, H. van Woesik, R. 2001. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131.
50- MacNeil, M. A. Mellin, C. Matthews, S. Wolff, N. H. McClanahan, T. R. Devlin, M. ... & Graham, N. A. (2019). Water quality mediates resilience on the Great Barrier Reef. Nature Ecology & Evolution, 3(4), 620-627.
51- Moberg, F. Folke, C. 1999. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233.
52- Nanajkar, De, K., Arora, M., M., Nithyanandan, M., Mote, S., & Ingole, B. (2022). Application of remotely sensed sea surface temperature for assessment of recurrent coral bleaching (2014–2019) impact on a marginal coral ecosystem. Geocarto international, 37(15), 4483-4508.
53- NASA Earth Observatory, (2022). Sea Surface Temperature Anomaly. https://earthobservatory.nasa.gov/global-maps/AMSRE_SSTAn_M.
54- Nguyen, T. Liquet, B. Mengersen, K. & Sous, D. (2021). Mapping of Coral Reefs with Multispectral Satellites: A Review of Recent Papers. Remote Sensing, 13(21), 4470.
55- NOAA Coral Reef Watch. 2022, updated daily. NOAA Coral Reef Watch Version 3.1 Daily 5km Satellite Regional Virtual Station Time Series Data for Southeast Florida, Mar. 12, 2013-Mar. 11, 2014. College Park, Maryland, USA: NOAA Coral Reef Watch. Data set accessed 2020-02-05 at https://coralreefwatch.noaa.gov/product/vs/data.php.
56- O’Carroll, A. G. Armstrong, E. M. Beggs, H. M. Bouali, M. Casey, K. S. Corlett, G. K. ... & Wimmer, W. (2019). Observational needs of sea surface temperature. Frontiers in Marine Science, 6, 420.
57- Orlando, J.L. Yee, S.H. 2016. Linking Terrigenous Sediment Delivery to Declines in Coral Reef Ecosystem Services. Estuaries Coasts 40, 359–375.
58- pard, C.R. R. Loughland. 2002. Coral mortality and recovery in response to increasing temperature in the southern Arabian Gulf. Aquatic. Ecosyst. Health Managment. 5: 395–402.
59- Pogoreutz, C. Radecker, N. Cardenas, A. Gardes, A. Voolstra, C.R. Wild, C. 2017. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob. Chang. Biol. 23, 3838–3848. https://doi.org/10.1111/gcb.13695.
60- Possingham, H. P. Bode, M. & Klein, C. J. (2015). Optimal conservation outcomes require both restoration and protection. PLoS biology, 13(1), e1002052.
61- Principe, P.P. Bradley, P. Yee, S. Fisher, W.S. Johnson, E. Allen, P. Campbell, D. 2012. Quantifying coral reef ecosystem services. EPA/ 600/R-11/206. U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park.
62- Ramanathan, K. Thenmozhi, M. George, S. Anandan, S. Veeraraghavan, B. Naumova, E. N. & Jeyaseelan, L. (2020). Assessing seasonality variation with harmonic regression: accommodations for sharp peaks. International journal of environmental research and public health, 17(4), 1318.
63- Riegl, B.M. S.J. Purkis, A.S. Al-Cibahy, M.A. Abdel-Moati, and O. Hoegh-Guldberg. 2011. Present limits to heat-adaptability in corals and population-level responses to climate extremes. PLoS One 6: e24802.
64- Saha, S. et al. 2010. NCEP Climate Forecast System Reanalysis (CFSR) Monthly Products, January 1979 to December 2010. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6DN438J.
65- ShepSara, B. (2020). Predict coral bleaching events https://learn.arcgis.com/en/projects/predict-coral-bleaching-events/arcgis-pro/.
66- Skirving, W. Marsh, B. De La Cour, J. Liu, G. Harris, A. Maturi, E. ... & Eakin, C. M. (2020). Coraltemp and the coral reef watch coral bleaching heat stress product suite version 3.1. Remote Sensing, 12(23), 3856.
67- Smith, T.B. Nemeth, R.S. Blondeau, J. Calnan, J.M. Kadison, E. Herzlieb, S. 2008. Assessing coral reef health across onshore to offshore stress gradients. Mar. Pollut. Bull. 56, 1983–1991.
68- Spillman, C. M., & Smith, G. A. (2021). A new operational seasonal thermal stress prediction tool for coral reefs around Australia. Frontiers in Marine Science, 8, 687833.
69- The Research Data Archive(RDA), 2020. dataset description page. https://rda.ucar.edu/datasets/ds093.2/#! description.
70- Vajed Samiei, J. Saleh, A. Mehdinia, A. Shirvani, A. & Sharifi, H. (2014). Specific thermal regime and coral bleaching pattern in Hengam Island, the eastern Persian Gulf. نشریه علمی پژوهشی خلیج فارس, 5(17), 15-26.‎
71- van Beukering, P. Brander, L. Zanten, B.V. Verbrugge, E. Lems, K. 2011. The economic value of the coral reef ecosystems of the United States Virgin Islands. Report R-11/ 06. IVM Institute for Environmental Studies, Amsterdam.
72- Van, T. T., Hieu, N. T. D., Huan, N. H., & Lien, N. P. (2022). Investigating Sea Surface Temperature and Coral Bleaching in the Coastal Area of Khanh Hoa Province. In IOP Conference Series: Earth and Environmental Science (Vol. 964, No. 1, p. 012004). IOP Publishing.
73- Vardi, T. Hoot, W. C. Levy, J. Shaver, E. Winters, R. S. Banaszak, A. T. ... & Montoya‐Maya, P. H. (2021). Six priorities to advance the science and practice of coral reef restoration worldwide. Restoration Ecology, 29(8), e13498.
74- Wilkinson, C.R. 2008. Status of Caribbean Coral Reefs After Bleaching and Hurricanes in 2005. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Centre, Townsville, Australia.
75-Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., & Graham, N. A. (2019). Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023-1034.
76- Wyatt, A.S.J. Leichter, J.J. Toth, L.T. Miyajima, T. Aronson, R.B. Nagata, T. 2019. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34. https://doi.org/10.1038/s41561-019-0486-4.
77- Xu, Y. Vaughn, N.R. Knapp, D.E. Martin, R.E. Balzotti, C. Li, J. Foo, S.A. Asner, G.P. Coral Bleaching Detection in the Hawaiian Islands Using Spatio-Temporal Standardized Bottom Reflectance and Planet Dove Satellites. Remote Sens. 2020, 12, 3219. https://doi.org/10.3390/rs12193219.