آشکارسازی تغییرات پوشش/کاربری اراضی با پردازش شیءگرای تصاویر ماهواره ای با استفاده از نرم افزاز Idrisi selvi (مطالعه موردی: منطقه آبدانان)

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار گروه جغرافیا، دانشگاه گلستان، گرگان، ایران

چکیده

براثرفعالیت‌های انسانی وپدیده‌های طبیعی چهره زمین همواره دستخوش تغییر می‌شود. ازاینروبرای مدیریت بهینه مناطق طبیعی آگاهی از نسبت تغییرات پوشش/کاربری اراضی ازضروریات محسوب می‌شود. تحقیق حاضرباهدف آشکارسازی تغییرات پوشش/کاربری اراضی منطقه آبدانان درطی دوره زمانی25ساله انجام شد.برای انجام تحقیق از تصاویر سال 1364، 1379 و 1389 سنجنده TM، ETM+ و TMماهواره لندست استفاده شده وپس ازانجام تصحیحات موردنیاز درمرحله پیش‌پردازش،باطبقه‌بندی شیءگراتصاویردرمحیط نرم‌افزار Idrisi Selvi، نقشه آشکارسازی تغییرات تهیه شده ونتایج نهایی ارائه شده است. نتایج حاصله نشان می‌دهد در فاصله سال‌های 1364 تا 1389، شاهد روند کاهشی اراضی با پوشش مرتعی متوسط و خوب هستیم که بیانگر روند کلی تخریب در منطقه از طریق جایگزین شدن مراتع متوسط و خوب توسط کاربری‌های مرتع فقیر و اراضی بایر هستیم. ضرایب ارزیابی صحت استخراج شده (دقت کل و ضریب کاپا به ترتیب 95% و 94/0)،نشاندهنده دقت بالای این روش طبقه‌بندی است. با توجه به نتایج به دست آمده از این تحقیق پیشنهاد می‏ شود که روش طبقه‏ بندی شیءگرا در تهیه نقشه‏ های پوشش/کاربری اراضی و همچنین آشکارسازی تغییرات مورد استفاده قرار گیرد. 

کلیدواژه‌ها


عنوان مقاله [English]

Detecting Land cover/Land use Changesby Object-oriented Processing of Satellite Images using IdrisiSelva Software (Case study: Abdanan Region)

نویسنده [English]

  • Saleh Arekhi
Assistant Professor, Geography Department, Human Sciences faculty, Golestan University, Gorgan, Iran
چکیده [English]

The face of the earth is always changing due to human activities and natural phenomena. Therefore, in order to optimize the management of the natural areas, knowledge of the ratio of land cover / land use changes is considered necessary.The present study was conducted to detect changes in land cover/land use in Abdanan region over a period of 25 years. In order to carry out the research, images of the years of 1985, 2000 and 2010 from TM, ETM + and TM sensors of Landsat satellite were used, and the map of the change detection was prepared and the final results was presented after performing the necessary corrections in the preprocessing stage, by the object-oriented classification of the images in the IdrisiSelvi software environment.The results show that during the period from 1985 to 2010, we are witnessing the decreasing trend of lands with moderate and good rangeland cover, which indicates the general trend of destruction in the region through the replacement of moderate and good pastures by the uses of poor pasture and barren lands. The extracted coefficients of validity assessment (total accuracy and kappa coefficient of 95% and 94% respectively) indicate the high accuracy of this classification method.
According to the results obtained from this research, it is suggested that the object-oriented classification method to be used in the preparation of land cover / land use maps and also the detection of changes.

کلیدواژه‌ها [English]

  • Satellite images
  • Land cover/land use
  • Change detection
  • Object-oriented method
  • Abdanan region

1- فیضی‌زاده، حاج‌میررحیمی؛ بختیار، سید محمود(1386)؛ آشکارسازی تغییرات فضای سبز شهر تبریز با استفاده از روش‌های شیءگرا، همایش شهری GIS.

2- خلاقی، سام؛ (1385)؛ پایش تغییرات خط ساحل دریای خزر، پایان نامه کارشناسی ارشد، دانشکده ادبیات و علوم انسانی، دانشگاه تبریز.

3- احدنژاد، محسن؛ (1379)؛ ارزیابی  و مدلسازی تغییرات کاربری اراضی با استفاده از تصاویر ماهواره‌های چندگانه و GIS، پایان نامه کارشناسی ارشد، دانشکده علوم انسانی، دانشگاه تربیت مدرس.

4- رسولی، علی اکبر و همکاران طرح؛(1386)؛ ارزیابی تغییرات جنگل‌های ارسباران با استفاده از فناوری GIS، طرح تحقیقاتی، مدیریت پژوهش و فناوری دانشگاه تبریز.

5- Alavipanah, S.K., 2003, Application Remote Sensing in Geology (Earth Sciences), Tehran University Press, 478 pages.

6 - Baatz, M. and Schape, A., 1999, Object-oriented and Multi Scale Image Analysis in Semantic Networks, Proceeding of the 2nd international symposium on remote sensing,16-22 August, Ensched, ITC.

7 - Boniad, A.E. and Hajighaderi, T., 2008, Mapping of Natural Forest Stands of Zanjan Province Using Landsat 7ETM+ sensor data, Science and Technology of Agriculture and Natural Resources, 42(11): 627-638.

8 - Borri, D., Caprioli,  M. and Tarantino, E., 2005, Spayial Informattion Extraction from VHR Satellite Data to Detect land Cover Transformations, Polytechnic University of Bari, Italy.

9 - Chavez, P.S.J.R. and Mackinnon, D.J., 1994, Automatic detection of vegetation changes in the southwestern United States using remotely sensed images, Photogrammetric Engineering and Remote Sensing, 60: 571–583.

10-  Chen, M., Su, W., Li, L., Chao, Z., Yue, A. and Li, H., 2009, Pixel-based and Object-oriented Knowledgebased Classification Methods Using SPOT5 Imagery, WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS, ISSN: 1790-0832, pages 477-489.

11- Definiens Imaging GmbH., 2006, Definiens Professional5 User Guide, http://www.definiens.com./ Userguide. pdf, 249 pp.

12 - Dehvari, A. and Heck, R.J., 2009, Comparison of object-based and pixel based infrared airborne image classification methods using DEM thematic layer, Journal of Geography and Regional Planning, 2(4): 086-096.

13 - Dewan, A.M. and Yamaguchi, Y., 2009, Land Use and Land Cover Change in Greater Dhaka, Bangladesh: Using Remote Sensing to Promote Sustainable Urbanization, Applied Geography 29:390-401.

14 - Du, Y., Teillet, P.M. and Cihlar, J., 2002, Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection, Remote Sensing of Environment, 82: 123–134.

15 - Fazizadeh, B. and Helali, H., 2010, Comparison of pixel-based and object-oriented and parameters affecting the on land use/cover West Azerbaijan province, Geography Studies, No. 71, 73-84.

16- Gamanya, A., Maeyer, P.D. and Dapper, M.D., 2009, Object- Oriented Change Detection for the City of Harare, Zimbabwe, Expert Systems with Applications, 36 (2009) 571-588.

17 - Gao,Y., Mas, J.F. and Navarrete, A., 2009, The improvement of an object-oriented classification using multi-temporal MODIS EVI satellite data, International Journal of Digital Earth, Volume 2, Issue 3 September 2009 , pp. 219 – 236

18- Hussaina, M., Chen, D., Cheng, A., Wei, H. and Stenley, D., 2013, Change detection from remotely sensed images: From pixel-based to object-based approaches, ISPRS Journal of Photogrammetry and Remote Sensing 80: 91–106.

19 - Karami, A., Khorani, A.A., Falahshamsi, S.R., Mosavi, V. and Khosravi, GH., 2012, Object-oriented application of remote sensing to map gully erosion, 20th Conference of Geomatics of Iran, 8 p.

20 - Khosravi, I. and Momeni, M., 2012, Identification structure of high-resolution satellite imagery using object-based image analysis, 20th Conference of Geomatics of Iran, 10 p.

21 - Mackie, R.I., 2013, Dynamic analysis of structures on multicore computers – Achieving efficiency through object oriented design, Advances in Engineering Software 66: 3–9.

22- Matinfar, H.R., Sarmadian, F., Alavipanah, S.K. and Heck, R., 2008, Characterizing Land use/land cover types by Landsat7data based upon Object oriented approach in Kashan region, Iranian journal of Range and Desert Reseach, 14 (4): 589-602.

23 - Mori, M., Hirose, Y. and  Akamatsu, Y.L., 2003, Object- based classification of Ikonos data for rural land use mapping. Http://www.define.com. eCognition Applied Notes , Vol 5 , No. 1.

24- Petropoulos, G.P., Kalaitzidis, C. and Vadrevu,  K.P., 2012, Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery, Computers & Geosciences, 41: 99–107.

25- Puissant, A., Rougier, S. and Stumpf, A., 2014, Object-oriented mapping of urban trees using Random Forest classifiers, International Journal of Applied Earth Observation and Geoinformation, 26: 235–245.

26 - Rasouli, A.A., 2008, Principles of remote sensing image processing applications, with emphasis on satellite, Tabriz University Press, 777 pages.

27 - Shattri M., Wong, T.H. and Shariff, A.R.M., 2000, Object oriented classification for land cover mapping, Htt://www.define.com. eCognition Applied Notes, Vol, No.2.

28 - Tso, B. and Mather, P.M., 2001, Classification Methods for Remotely Sensed Data, Taylor & Francis, USA.

29- Walter, Volker., 2004, Object-based classification of remote sensing data www.elsevier.com/locate/isprsjprs for change detection,

30 - Wang, L., Sousa, W.P. and Gong, P., 2004, Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery, International jornal of Remote sensing, 25(24): 5655-5668.

31- Yaghobzadeh, M. and Akbarpour, A., 2011, The effect of satellite image classification algorithm based on curve number runoff and maximum flood discharge using GIS and RS, Geography and Development 9 (22):5-22.

32 - Yu, H.Y., Cheng, G., Ge, X.S.  and Lu, X.P., 2011, Object oriented land cover classification using ALS and GeoEye imagery over mining area, Transactions Nonferrous Metals Society of China 21:733-737.

33- Zhou1, W., Austin, T. and Morgan, G.R., 2005, Measuring Urban arcel Lawn Greenness by Using an Object oriented Classification Approach, Rubenstein School of Environment and Natural Resources, University of Vermont, George D. Aiken Center, 81 Carrigan Drive