بررسی اثر هندسه دید در تصاویر صعودی و نزولی و بازنگری مجدد SAR منطقه باغستان تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد پدافندغیرعامل(آفا)، دانشگاه صنعتی مالک اشتر

2 دانشیار دانشگاه صنعتی مالک اشتر

3 استادیاردانشگاه صنعتی مالک اشتر

10.22131/sepehr.2021.246104

چکیده

هندسه دید یکی از مهمترین پارامترها از عامل رادار محسوب میشود که میتواند باعث دیده شدن و یا نشدن یک هدف واقعی گردد. از اینرو بررسی و تحلیل تأثیر این پارامتر بهمنظور تشخیص اهداف و تفسیر تصاویر راداری بسیار حائز اهمیت است. هندسه دید شامل زاویه برخورد، زاویه کجی و جهت تصویربرداری میشود. در این مقاله هندسه دید در تصاویر بازنگری مجدد و تصاویر صعودی و نزولی مورد بررسی قرار میگیرد. منطقه مورد مطالعه در تحقیق حاضر، منطقه مسکونی باغستان واقع در غرب استان تهران است. تصاویر اخذ شده از ماهواره سنتینل1 در جهات، زوایای فرود و زمان تصویربرداری مختلف میباشند. این تصاویر متعلق به زمان­های سپتامبر و اکتبر سال 2018 میلادی بوده و فاصله­ی زمانی بین تصاویر 5 روز است. در این تحقیق با استفاده از تحلیل هیستوگرام و متا داده اخذ شده از تصاویر SAR، هم موقعیتسازی تصاویر بازنگری مجدد و تحلیل زاویه برخورد و جهت تصویربرداری انجام گرفته است. نتایج تحقیق نشان داد که زاویه برخورد بهدلیل تغییرات کم در حدود 4 درجه، تأثیر ناچیزی بر روی تصاویر داشته است. همچنین با توجه به اینکه فاصله زمانی بین تصاویر اخذ شده 5 روز است این عامل نیز کمترین اثر را بر روی تصاویر SAR داشته است ولی بر خلاف تصاویر اپتیکی، جهت تصویربرداری بیشترین تأثیر را بر روی تصویر SAR داشته به گونه­ای که یک سطح شیبدار یکسان در دو جهت متفاوت رفتاری متمایز را نشان میدهد. در این مقاله اثر زاویه برخورد مورد بررسی، در بازه 31 تا 40 درجه بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing changes of Sentinel-1 SAR imagery caused by epipolar geometry and satellite moving direction Study area: Baghestan region of Tehran

نویسندگان [English]

  • Fateme Amjadipour 1
  • Hamid Dehghani 2
  • Mojtaba Behzad Fallahpour 3
1 Master of Passive Defense Engineering (AFA), Malek Ashtar University of Technology
2 Associate Professor Malik Ashtar University of Technology
3 Assistant Professor Malik Ashtar University of Technology
چکیده [English]

Extended Abstract
Introduction
The complexity of interpreting SAR radar images makes target recognition difficult despite many studies performed in this regard. Various factors including material and dimensions of the target, radar frequency, polarization, target shape, and vision geometry affect the response received from SAR radar. Investigating these characteristics facilitate target recognition.
Synthetic Aperture Radar sensors are widely used in both airborne and space-borne systems. Space-borne systems equipped with Synthetic Aperture Radar sensors are side-looking and because of their nature as a radar, many parameters such as vision geometry will affect their ability (or disability) in seeing the target and change the resulting images. Therefore, it is very important to study the effect of this parameter to identify the target and interpret these images. The visibility geometry includes incidence angle, look angle, and the direction of the imaging.
 
Materials & Methods
The present study investigates visibility geometry in revision images and ascending and descending scenes. To reach this aim, a single scene captured by Sentinel-1 from a residential area is examined in different images with different directions, incidence angles, and imaging time. Results indicate that incidence angle changed slightly (4 degrees) and thus, left a negligible effect on the image. Moreover, there was a 5-day time interval between the captured images and therefore, this factor had the least effect on Synthetic Aperture Radar images. Unlike optical images, the direction of imaging had the greatest effect on SAR images. For an instance, a single ramp behaves differently in two images captured from different directions. Therefore, direction of imaging and its effects on seeing (or not seeing) the target are analyzed in ascending and descending images.
 
Results & Discussion
The effect of vision geometry on radar images has been rarely investigated in similar studies, and the present paper has taken a step forward in this regard. Fallahpour et al., (2016) have simulated the effect of incidence angle, which is a parameter of visibility geometry and the shape of the targets in SAR images. Shapes such as cones, cylinders, and cubes were used in this simulation representing real buildings, niches, tree trunks, etc. which are very common in SAR images. Moreover, behavioral pattern of the aforementioned geometric shapes were simulated at different landing angles (30, 40, 45, 50, and 60 degrees) from the viewpoint of SAR imaging systems to reach a more comprehensive result.
Then, various studies investigating the effects of incidence angle and direction on radar images have been reviewed. Some of these studies have dealt with the effect of these parameters on the classification of radar images. Dumitru et al. have examined the effects of resolution, pixel spacing, patch size, path direction, and incidence angle on the classification of TerraSAR-X images. To reach this aim, they have selected an optimal TerraSAR-X product and then specified the number of classes. They have finally investigated the effects of incidence angle and path direction on the classification results. Results indicated that images captured in ascending direction were 80% better than the descending images. Moreover, images captured from an incidence angle near the upper wing showed better results.
 
Conclusion
The present study has investigated the effect of usually neglected parameter of visibility geometry on SAR images. Images were captured by Sentinel-1 in both ascending and descending directions. Following speckle noise reduction and geometric correction, incidence angle and its effects on the detected changes were investigated. The slight 4-degree changes of this parameter have not caused the resulting changes. Moreover, there was a 5 day time interval between these two images and thus, time could not be an effective parameter too. Results indicate that detected changes in the residential area were due to a change in the direction of imaging. Changes of this parameter can result in seeing (or not seeing) the target, and therefore, it is very important to investigate the effects of this parameter and correct it.

کلیدواژه‌ها [English]

  • Sentinel-1
  • Direction of imaging
  • Incidence Angle
  • Metadata
  • West of Tehran
  • Histogram Analysis
1- بهزاد فلاح‌پور، م.، دهقانی، ح.، جبار رشیدی، ع.، شیخی، ع.، 1395. شبیه‌سازی و تحلیل اثر زاویه فرود و شکل اهداف در تصاویر SAR. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی، 25(98): 129-140.
2- Arief, R., Dyatmika, H. S., & Ali, S. (2020). A fusion of digital elevation model based on interferometry SAR technique from ascending and descending path in urban area. In IOP Conference Series: Earth and Environmental Science (Vol. 500, No. 1, p. 012035). IOP Publishing.‏
3- Awasthi, S., Jain, K., Mishra, V., & Kumar, A. (2020). An approach for multi-dimensional land subsidence velocity estimation using time-series Sentinel-1 SAR datasets by applying persistent scatterer interferometry technique. Geocarto International, 1-32.‏
4- Che, M., & Gamba, P. (2020). Urban Change Pattern Exploration Using Fine-resolution SAR of Ascending and Descending Orbits. In 2020 IEEE Radar Conference (RadarConf20) (pp. 1-4). IEEE.‏
5- Del Soldato, M., Solari, L., Raspini, F., Bianchini, S., Ciampalini, A., Montalti, R., ... & Casagli, N. (2019). Monitoring Ground Instabilities Using SAR Satellite Data: A Practical Approach. ISPRS International Journal of Geo-Information, 8(7), 307.‏
6- DeLancey, E. R., Brisco, B., Canisius, F., Murnaghan, K., Beaudette, L., & Kariyeva, J. (2019). The Synergistic Use of RADARSAT-2 Ascending and Descending Images to Improve Surface Water Detection Accuracy in Alberta, Canada. Canadian Journal of Remote Sensing, 45(6), 759-769.‏
7- Dumitru, C. O., & Datcu, M. (2013). Information content of very high resolution SAR images: Study of feature extraction and imaging parameters. IEEE Transactions on Geoscience and Remote Sensing, 51(8), 4591-4610.‏
8- El Kamali, M., Abuelgasim, A., Papoutsis, I., Loupasakis, C., & Kontoes, C. (2020). A reasoned bibliography on SAR interferometry applications and outlook on big interferometric data processing. Remote Sensing Applications: Society and Environment, 100358.‏
9- Ferretti, A. (2014). Satellite InSAR data: reservoir monitoring from space. EAGE publications.‏
10- Fielding, E. J., Liu, Z., Stephenson, O. L., Zhong, M., Liang, C., Moore, A., ... & Simons, M. (2020). Surface Deformation Related to the 2019 M w 7.1 and 6.4 Ridgecrest Earthquakes in California from GPS, SAR Interferometry, and SAR Pixel Offsets. Seismological Research Letters.‏
11- Foumelis, M. (2018). Vector-based approach for combining ascending and descending persistent scatterers interferometric point measurements. Geocarto International, 33(1), 38-52.‏
12- Fujiyama, K., & Shimada, M. (2019). Monitoring MT. Shinnmoe’s Crater Activity Using the Timeseries Palsar-2 Interferometry. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 1729-1732). IEEE.‏
13- Garioud, A., Valero, S., Giordano, S., & Mallet, C. (2020, June). On the joint exploitation of optical and SAR imagery for grassland monitoring. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020.‏     
14- Lauknes, T. R. (2011). Rockslide mapping in Norway by means of interferometric SAR time series analysis.‏
15- Liu, X., Zhao, C., Zhang, Q., Yang, C., & Zhu, W. (2020). Heifangtai loess landslide type and failure mode analysis with ascending and descending Spot-mode TerraSAR-X datasets. Landslides, 17(1), 205-215.‏
16- Mora, O., Ordoqui, P., Iglesias, R., & Blanco, P. (2016). Earthquake rapid mapping using ascending and descending Sentinel-1 TOPSAR interferograms. Procedia Computer Science, 100, 1135-1140.‏
17- Ohki, M., Tadono, T., Itoh, T., Ishii, K., Yamanokuchi, T., Watanabe, M., & Shimada, M. (2019). Flood area detection using PALSAR-2 amplitude and coherence data: The case of the 2015 heavy rainfall in Japan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2288-2298.‏
18- Samsonov, S., & Baryakh, A. (2020). Estimation of Deformation Intensity above a Flooded Potash Mine Near Berezniki (Perm Krai, Russia) with SAR Interferometry. Remote Sensing, 12(19), 3215.‏
19- Sarychikhina, O., Palacios, D. G., Argote, L. A. D., & Ortega, A. G. (2020). Application of satellite SAR interferometry for the detection and monitoring of landslides along the Tijuana-Ensenada Scenic Highway, Baja California, Mexico. Journal of South American Earth Sciences, 103030.‏
20- Sentinel Online, overview of missions, https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview, Last modified: 2020.
21- Susaki, J., Kusakabe, T., & Anahara, T. (2020). Estimating 3d Land Subsidence from Multi-Temporal SAR Images and Gnss Data Using Weighted Least Squares. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 165-172.‏
22- Takada, Y., & Motono, G. (2020). Spatiotemporal behavior of a large-scale landslide at Mt. Onnebetsu-dake, Japan, detected by three L-band SAR satellites. Earth, Planets and Space, 72(1), 1-18.‏
23- Tripathi, G., Pandey, A. C., Parida, B. R., & Kumar, A. (2020). Flood Inundation Mapping and Impact Assessment Using Multi-Temporal Optical and SAR Satellite Data: a Case Study of 2017 Flood in Darbhanga District, Bihar, India. Water Resources Management, 1-22.‏
24- Wang, Z., Liu, J., Wang, J., Wang, L., Luo, M., Wang, Z., ... & Li, H. (2020). Resolving and Analyzing Landfast Ice Deformation by InSAR Technology Combined with Sentinel-1A Ascending and Descending Orbits Data. Sensors, 20(22), 6561.‏