تحلیل رفتار و تأثیر پارامترهای طراحی شبکه فتوگرامتری پهپاد بر روی کیفیت بازسازی سه بعدی به روش شبیه سازی مونت­ کارلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فتوگرامتری دانشگاه تهران

2 دانشیار فتوگرامتری دانشکده مهندسی نقشه برداری و اطلاعات مکانی دانشگاه تهران

10.22131/sepehr.2021.247874

چکیده

آگاهی از رفتار و تأثیر پارامترهای طراحی شبکه فتوگرامتری پهپاد بر روی کیفیت بازسازی سهبعدی برای دستیابی به کیفیتی بهینه در بازسازی سهبعدی،  یکی از بخش­های مهم در اجرای یک پروژه فتوگرامتری پهپاد با توجه به شرایط و محدودیتهای موجود میباشد. اما بهدلیل پیچیدگی، زمان­بر بودن و هزینه بالای آن در واقعیت، هنوز تحقیق جامعی برای رفتارسنجی پارامترهای طراحی شبکه و بازسازی سهبعدی انجام نشده است. برای غلبه بر چالش­های فضای واقعی در این مقاله روش شبیهسازی برای بررسی پارامترها به­کار برده شده است. برای این منظور در محیط نرمافزار متلب از یک نقطه با مختصات معلوم تصویربرداری شده است و پس از اعمال خطاهای سیستماتیک و اتفاقی به پارامترها، با استفاده از معادلات شرط هم خطی مشاهدات عکسی و حل آنها به روش کمترین مربعات خطا، بازسازی سهبعدی انجام شده و کیفیت آن به روش مونتکارلو مورد ارزیابی قرار گرفته است. نتایج حاصل از آزمونهای انجام شده نشان میدهد پارامترهای ناپایداری هندسی دوربین غیرمتریک، کیفیت مشاهدات تصویری و دقت مثلثبندی هوایی بهترتیب رابطه مستقیم، رابطه عکس و رابطه مستقیم با کیفیت صحت بازسازی سهبعدی دارند. همچنین با افزایش فاصله کانونی بدون تغییر ارتفاع، صحت مسطحاتی متناسب با افزایش بزرگنمایی و صحت ارتفاعی تقریباً متناسب با مقدار آن افزایش مییابد. که در حالت GSD ثابت، خطای مسطحاتی بازسازی سهبعدی کاهش مییابد اما خطای ارتفاعی متناسب با نصف افزایش بزرگنمایی افزایش مییابد. علاوهبر این نتایج نشان داده است افزایش ارتفاع پرواز برخلاف حالت استریو، خطای مسطحاتی و ارتفاعی بازسازی سهبعدی بهصورت خطی افزایش مییابد. همچنین نتایج نشان میدهد با افزایش پوشش تصویربرداری خطای بازسازی سهبعدی کاهش مییابد. این شبیهسازی اگرچه ممکن است کاملاً منطبق بر واقعیت نباشد، اما میتواند یک نوع رفتارسنجی از پارامترها را ارائه نماید که بهعنوان یک تحقیق مکمل برای تحقیقات سعی و خطای معمول خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Behavior analysis and the effect of UAV photogrammetric network design parameters on the quality of 3D reconstruction by Monte Carlo imulation Method

نویسندگان [English]

  • Ali Erfanzadeh 1
  • Mohammad Saadatseresht 2
1 Master student of Photogrammetry, University of Tehran
2 Associate Professor of Photogrammetry, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran
چکیده [English]

Extended Abstract
Introduction
Nowadays, UAV photogrammetry has become one of the most effective methods of collecting spatial data according to the factors time, cost, quality and variety of outputs among terrestrial and aerial mapping technologies. Because the quality of a UAV photogrammetry products depends on the network design parameters setting according to the existing conditions and limitations, therefore, awareness of the behavior and impact of network design parameters on the quality of 3D reconstruction to achieve optimal quality of outputs is a very important issue. However, due to the time-consuming and the high cost of doing this study with huge real data, comprehensive research has not yet been conducted to measure the behavior of the effective parameters in network design and 3D reconstruction. There are various parameters include camera field of view, positioning error and imaging tilt in flight navigation, flight altitude and designed ground pixel dimensions, amount of sidelap and overlap images, image observation noise due to image quality, aerial triangulation error, in the process of preparing the map from aerial images, which is known as the most important parameters of UAV photogrammetric network design. In this paper, the simulation method is used to investigate the effect and behavior of the above parameters on the quality of three-dimensional reconstruction.
 
Materials & Methods
In the proposed method in MATLAB software environment, from a point with known 3D coordinates, using the collinearity equations and the value set for the network design parameters and their standard deviation according to the reality and experience of the expert, the imaging is done in a simulated manner. Then, by applying random and systematic errors on the visual observations and aerial triangulation parameters, the collinearity equations of the photographic observations form the desired point and using the least squares method of error in solving nonlinear equations, three-dimensional reconstruction, and quality are performed, then it has been evaluated by the Monte Carlo method. To achieve the results with high reliability, the quality of three-dimensional reconstruction is evaluated in five modes, respectively, ideal, excellent, good, average and bad, according to the expert opinion in setting the values of each parameter.
Results & Discussion
The results of this study show, most effective parameters in the quality of three-dimensional reconstruction in ideal conditions are camera instability, error of exterior orientation parameters and image quality, respectively, which gradually give way to parameters of flight altitude, imaging coverage and camera field of view in bad conditions. The results of the flight navigation error show, increased imaging platform instability has no significant effect on the average accuracy of 3D reconstruction, however, the accuracy changes in different places increase up to 20% due to the heterogeneity of the coverage and the visibility of different parts of the earth in the video network. The results also show that with increasing geometric instability of the non-metric camera, the accuracy of 3D reconstruction decreases linearly, in this regard, the imaging in bad conditions and the quality of the camera, the slower the reduction speed. It has also been shown that with increasing image observation error, which depends on image quality, the accuracy of 3D reconstruction decreases linearly. The results of the study of aerial triangulation parameters show that the three-dimensional reconstruction error increases linearly with increasing tie point matching error. In addition, as the focal length increases in the fixed flight altitude mode, the horizontal accuracy increases in proportion to the inverse magnification, and as the focal length decreases, the altitude accuracy decreases linearly, in the fixed ground sampling distance (GSD) mode, the horizontal error of 3D reconstruction is slowly reduced to 20%, while the height error increases with increasing height and decreasing the geometric resistance of the network by a factor of half magnification. The results also show that unlike traditional photogrammetry here, with increasing flight altitude, the horizontal and altitude errors of the 3D reconstruction increase linearly. The results of the study of the parameters of sidelap and overlap images show that the sidelap and overlap images can change the surface error up to 10 times and the height error and complete three-dimensional reconstruction up to 5 times.
 
Conclusion
This study, while introducing the effective parameters in three-dimensional reconstruction by UAV photogrammetric method, has investigated the behavior and effect of these parameters on the quality of three-dimensional reconstruction in the simulation environment. This means how the quality of the reconstruction changes with minor changes to each of the parameters from half to twice the standard mode. Therefore, the closer this simulation is to reality, the more practical the results will be. Naturally, this complicates the simulation and increases the computational volume. Although this simulation is not entirely consistent with the actual situation, it can provide a kind of behavioral measurement of the parameters that serves as a complementary research to routine try and error investigations.

کلیدواژه‌ها [English]

  • Network design parameters
  • Simulation
  • Monte Carlo
  • Reconstruction quality
1- دادرس جوان، صمد زادگان، سوادکوهی، آقاقلی­زاده؛  فرزانه، فرهاد، محمد، محمد (1397). ارزیابی توانایی فتوگرامتری پهپاد در مدل­سازی سه­ بعدی مسیر بدون نقاط کنترل زمینی. بیست و پنجمین همایش ملی ژیوماتیک و سومین همایش ملی مهندسی اطلاعات مکانی، ص 10-1.
2- عباس­پور، خوش ­لهجه آذر، ورشوساز؛ محمد­مهدی، مهدی، مسعود(1397). تأثیر تعداد و موقعیت قرارگیری نقاط کنترل زمینی در دقت به ­دست آمده برای نقشه تهیه شده به روش فتوگرامتری پهپاد مبنا، ص 9-1.
 
3- Alidoost, F., & Arefi, H. (2017). comparison of UAS-BASED Photogrammetry Software for   3D point cloud Generation: A Survey over A Historical  Site. Isprs Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4.
4- Barry, P., & Coakley, R. (2013). Accuracy of UAV photogrammetry compared with network RTK GPS. Int. Arch. Photogramm. Remote Sens, 2, 2731.
5- Bhandari, B., Oli, U., Pudasaini, U., & Panta, N. (2015, May). Generation of high resolution DSM using UAV images. In FIG Working Week (pp. 17-21).
6- Burns, J. H. R., & Delparte, D. (2017). Comparison of commercial structure-from-motion photogrammety software used for underwater three-dimensional modeling of coral reef environments. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 127.
7- Cryderman, C., Mah, S. B., & Shufletoski, A. (2014). Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica, 68(4), 309-317.
8- Design, L., Wang, N., Chang, Y., El-sheikh, A. A., Wang, N., Chang, Y., & Carlo, A. A. E. M. (2012). Monte Carlo simulation approach to life cycle cost management. 2479(May 2010).
9- Eisenbeiß, H. (2009). UAV photogrammetry (Doctoral dissertation, ETH Zurich).
10- Forlani, G., Dall’Asta, E., Diotri, F., Cella, U. M. D., Roncella, R., & Santise, M. (2018). Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sensing, 10(2), 311.
11- Gerke, M., & Przybilla, H. J. (2016). Accuracy analysis of photogrammetric UAV image blocks: Influence of onboard RTK-GNSS and cross flight patterns. Photogrammetrie, Fernerkundung, Geoinformation (PFG), (1), 17-30.
12- Gindraux, S., Boesch, R., & Farinotti, D. (2017). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing, 9(2), 186.
13- Haarbrink, R. B., & Eisenbeiss, H. (2008). Accurate DSM production from unmanned helicopter systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B1), 1259-1264.
14- Harwin, S., Lucieer, A., & Osborn, J. (2015). The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Remote Sensing, 7(9), 11933-11953.
15- Leitão, J. P., Moy de Vitry, M., Scheidegger, A., & Rieckermann, J. (2016). Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrology and Earth System Sciences, 20(4), 1637-1653.
16- Mendes, T., Henriques, S., Catalao, J., Redweik, P., & Vieira, G. (2015, October). Photogrammetry with UAV’s: quality assessment of open-source software for generation of ortophotos and digital surface models. In Proceedings of the VIII Conferencia Nacional De Cartografia e Geodesia, Lisbon, Portugal (pp. 29-30).
17- Mesas-Carrascosa, F. J., Clavero Rumbao, I., Torres-Sánchez, J., García-Ferrer, A., Peña, J. M., & López Granados, F. (2017). Accurate ortho-mosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes. International journal of remote sensing, 38(8-10), 2161-2176.
18- Mesas-Carrascosa, F. J., Notario García, M. D., Meroño de Larriva, J. E., & García-Ferrer, A. (2016). An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors, 16(11), 1838.
19- Mesas-Carrascosa, F. J., Torres-Sánchez, J., Clavero-Rumbao, I., García-Ferrer, A., Peña, J. M., Borra-Serrano, I., & López-Granados, F. (2015). Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sensing, 7(10), 12793-12814.
20- Mooney, C. Z. (1997). Monte carlo simulation (No. 116). Sage
21- Niederheiser, R., Mokroš, M., Lange, J., Petschko, H., Prasicek, G., & Elberink, S. O. (2016). deriving   3D point clouds from Terrestrial Photographs-com parision of different sensors and Software. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
22- Raczynski, R. J. (2017). Accuracy analysis of products obtained from UAV-borne photogrammetry influenced by various flight parameters (Master’s thesis, NTNU).
23- Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. International archives of the photogrammetry, remote sensing and spatial information sciences, 38(1), C22.
24- Remondino, F., Spera, M. G., Nocerino, E., Menna, F., & Nex, F. (2014). State of the art in high density image matching. The photogrammetric record, 29(146), 144-166.
25- Rock, G., Ries, J. B., & Udelhoven, T. (2011, September). Sensitivity analysis of UAV-photogrammetry for creating digital elevation models (DEM). In Proceedings of the Conference on Unmanned Aerial Vehicle in Geomatics, Zurich, Switzerland (Vol. 1416).
26- Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E., & Aksamitauskas, V. Č. (2015). The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619-627.
27- SENKAL, E., Kaplan, G., & Avdan, U. (2021). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on archaeological sites. International Journal of Engineering and Geosciences, 6(2), 81-89.
28- Shahbazi, M., Sohn, G., Théau, J., & Menard, P. (2015). Development and evaluation of a UAV-photogrammetry system for precise 3D environmental modeling. Sensors, 15(11), 27493-27524.
29- Tahar, K. N. (2013). An evaluation on different number of ground control points in unmanned aerial vehicle photogrammetric block. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 40, 93-98.
30- Turner, D., Lucieer, A., & Wallace, L. (2013). Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2738-2745.
 31- Zhang, Y., Xiong, J., & Hao, L. (2011). Photogrammetric processing of low‐altitude images acquired by unpiloted aerial vehicles. The Photogrammetric Record, 26(134), 190-211.