محاسبه و ارزیابی دمای سطح زمین با استفاده از الگوریتم پنجره مجزای غیرخطی و تصاویر ماهواره سنتینل 3 - مطالعه موردی: استان تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی دانشگاه تهران

2 استادیاردانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، پردیس دانشکده‌های فنی دانشگاه تهران

3 دانشجوی کارشناسی ارشد، گروه عمران، دانشکده فنی مهندسی، دانشگاه بوعلی سینا همدان

10.22131/sepehr.2021.247876

چکیده

در سالهای اخیر دمای سطح زمین (LST) اهمیت زیادی در مطالعات علوم زمین و محیطزیست پیدا کرده است. فناوری سنجشازدور، امکان پایش مکانی و زمانی این کمیت را در سطوح وسیع فراهم میآورد. این پارامتر از طریق تصاویر ماهوارهای با حداقل یک باند حرارتی فراهم میشود. در این مطالعه از روش پنجره مجزای غیرخطی توسط ماهواره  سنتینل3 در طول فصول مختلف سال 1397 برای محاسبه دمای سطح زمین استفاده شد و همچنین یک روش اعتبارسنجی مستقیم و غیرمستقیم برای آن ارائه شده است. روش اعتبارسنجی برمبنای ارزیابی قطعی این محصول با داده میدانی، و ارزیابی نسبی آن با محصولات دمای مادیس و SLSTR میباشد. همچنین از روش برآورد گسیلمندی برمبنای شاخص پوشش گیاهی برای تخمین دما از روش پنجره مجزای غیرخطی باتوجه به دو باند حرارتی تصاویر سنتینل3 استفاده شد. برای اطمینان بیشتر، محصولات دمای مادیس و SLSTR نیز بهصورت مستقیم با داده میدانی ارزیابی قطعی شد. بهطور کلی نتایج حاصل از محصول دمای مادیس، SLSTR و دمای برآورد شده از روش پنجره مجزای غیرخطی روندی مشابه را برای تغییرات دما در طول فصول سال نشان دادند. بهطور خلاصه، با توجه به دو روش اعتبارسنجی مستقیم و غیرمستقیم برای دمای برآورد شده از روش پنجره مجزای غیرخطی، فصل تابستان با مقادیر بزرگ میانگین مربع خطاها (2/46)، و فصل زمستان با مقادیر کوچک میانگین مربع خطاها (0/86) بهترتیب کمترین و بیشترین نتایج را برای فصول در سال 1397 ارائه دادند. در نهایت، با توجه به نتایج بهدست آمده دمای برآورد شده هم بهصورت قطعی و هم بهصورت نسبی نتایج مطلوبی را برای تمام فصول در مقیاس زمانی و مکانی گسترده فراهم میکند که میتواند در مقیاسهای بزرگ برای برآورد دما در حل بحرانهای زیستمحیطی و همچنین تغییر اقلیم از آن استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Calculating land surface temperature using non-linear split window algorithm and sentinel-3 satellite imagery - Case study: Tehran Province

نویسندگان [English]

  • Arastou Zarei 1
  • Reza Shahhoseini 2
  • Ronak Ghanbari 3
1 MSc Student in School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran
2 Assistant Professor in School of Surveying and GeospatialEngineering, College of Engineering, University of Tehran
3 MSc Studentin Civil Group,Faculty of Engineering,Bu-Ali Sina Hamedan University
چکیده [English]

Extended Abstract
Introduction
   As a key parameter describing physics of land surface processes on local and global scales, land Surface Temperature (LST) is the result of all interactions and energy flows between land surface and the atmosphere. Temperature changes rapidly on temporal and spatial scales, and thus a complete description of LST require measurements involving spatial and temporal frequencies. Hence, climatological, meteorological, and hydrogeological studies require having access to wide scale information about spatial changes of air temperature. Since the LST product of SLSTR uses linear split-window algorithm, the present study has used nonlinear split-window algorithm to estimate LST in Sentinel-3 images. Linearity of the radiation transfer equation in linear algorithm and some approximations used in split-window algorithms (such as transfer approximation as a linear function of vapor value) result in considerable errors because of which nonlinear algorithm is used in the present study. Using linear split-window algorithm to estimate LST in tropical climates also leads to a high level of error. The present study seeks to estimate LST using a nonlinear split-window algorithm and data retrieved from Sentinel-3 in different seasons of 2018 and 2019. The results are also evaluated using temperature product of MODIS and SLSTR.
 
Materials & Method
   A time series of sentinel-3 images retrieved from 2018 to 2019 was used as research data. Data were collected by Sentinel-3 SLSTR sensors operated by the European Space Agency (ESA). Obviously, images shall be radio-metrically corrected before calculating physical land surface parameters such as temperature, emissivity, reflectance and radiance, albedo, and etc. To reach this goal, it is necessary to omit or minimize the effect of atmosphere, epipolar geometry of sensor, sunlight, topography, and surface characteristics while estimating surface parameters in these images. The current study seeks to estimate LST applying a nonlinear split-window algorithm on Sentinel-3 data collected during different seasons of 2018 and 2019 and to evaluate the results using temperature product of MODIS, SLSTR, and in-situ data. Pearson Correlation Coefficient and Root Mean Square Error (RMSE) were also used as relative and quantitative criteria to evaluate the accuracy of the proposed method and determine the deference between temperature calculated by the proposed method and temperature product of MODIS and SLSTR sensor. Hence, four frames of LST product collected by MODIS, and SLSTR in April, June, and October, 2018 and January, 2019 were used to evaluate the proposed method.
 
Results & Discussion
   The proposed method was also indirectly evaluated using temperature products of MODIS and SLSTR sensor. Applying parameters of mean and root mean square error, the evaluation has shown that the results obtained from the proposed method in the one-year reference period were more similar to the results obtained from MODIS sensor. Comparing nonlinear Split-Window algorithm and MODIS products, RMSE ranged from 1.21 to 2.46 and the highest and lowest accuracy belonged to winter and summer, respectively. Comparing this algorithm with the SLSTR product, RMSE ranged from 0.76 to 2.24 and the highest and lowest accuracy belonged to winter and summer, respectively. Proper performance of the algorithm in winter is due to the relative balance of atmospheric water vapour in this season. Comparing nonlinear modelling of atmospheric water vapour in the non-linear algorithm of a Split-window and the linear algorithm in SLSTR and MODIS products, the small difference between temperature calculated by the algorithm and the products can be justified. However, due to temperature fluctuations in summer, results obtained by the proposed method were not reliable enough compared to both temperature products. Generally, results obtained from the proposed method showed a higher correlation with the temperature product of SLSTR sensor, which is due to the similar spectral bands used in calculating the surface temperature. Relative comparison of the Split-Window and the MODIS product’s nonlinear algorithm showed a coefficient of determination ranging from 0.76 to 0.96, while comparing this algorithm with the SLSTR product showed a determination coefficient of 0.80 to 0.98. Comparing temperature obtained from the nonlinear Split-Window algorithm with SLSTR and MODIS temperature products, the proposed algorithm was relatively stable no matter which season was taken into account.
 
Conclusion
   The present study seeks to estimate Land Surface Temperature using a nonlinear Split-Window algorithm and Sentinel-3 data collected in different seasons. Values obtained from the algorithm were validated using in-situ dataset retrieved from the meteorological station. They were also evaluated using temperature product of MODIS and SLSTR. To increase the accuracy level, temperature product of MODIS and SLSTR were also evaluated and compared with the in-situ dataset and provided good results. Generally, there is a significant difference between temperature values estimated by the NSW algorithm for different seasons especially summer. However, a similar trend was observed in temperature changes reported by SLSTR and MODIS, and the proposed algorithm in different seasons of the study area. Although, the nonlinear Split-Window algorithm showed a higher accuracy in spring and winter, overall results indicated that the proposed method was relatively stable no matter which season was taken into account. It can be concluded that LST estimation with nonlinear Split-window method and Sentinel-3 satellite data has an acceptable level of accuracy and thus, can be used in large scale environmental crises such as climate changes.
 

کلیدواژه‌ها [English]

  • Land surface temperature
  • Nonlinear split-window algorithm
  • Sentinel-3
  • MODIS
  • SLSTR
1- Ahlgren, P., Jarneving, B., & Rousseau, R. (2003). Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550-560.
2- Anding, D., & Kauth, R. (1970). Estimation of sea surface temperature from space. Remote Sensing of Environment, 1(4), 217-220.
3- Baldridge, A. M., Hook, S., Grove, C., & Rivera, G. (2009). The ASTER spectral library version 2.0. Remote sensing of environment, 113(4), 711-715.
4- Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., & Hanssen, R. F. (2012). ESA’s sentinel missions in support of Earth system science. Remote sensing of environment, 120, 84-90.
5- Coll, C. s., Caselles, V., Galve, J. M., Valor, E., Niclos, R., Sأ،nchez, J. M., & Rivas, R. l. (2005). Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sensing of Environment, 97(3), 288-300.
6- Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.-H., Féménias, P., Frerick, J., . . . Mavrocordatos, C. (2012). The global monitoring for environment and security (GMES) sentinel-3 mission. Remote sensing of environment, 120, 37-57.
7- Drusch, M., Del Bello, U., Carlier, S. b., Colin, O., Fernandez, V., Gascon, F., . . . Martimort, P. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25-36.
8- Emami, H., Mojaradi, B., & Safari, A. (2016). A new approach for land surface emissivity estimation using LDCM data in semi-arid areas: exploitation of the ASTER spectral library data set. International Journal of Remote Sensing, 37(21), 5060-5085.
9- Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1113-1126.
10- Goita, K., & Royer, A. (1997). Surface temperature and emissivity separability over land surface from combined TIR and SWIR AVHRR data. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 718-733.
11- Gutman, G., & Ignatov, A. (1998). The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 19(8), 1533-1543.
12- Huang, C., Duan, S.-B., Jiang, X.-G., Han, X.-J., Wu, H., Gao, M., . . . Li, Z.-L. (2019). Intercomparison of AMSR2-and MODIS-Derived Land Surface Temperature Under Clear-Sky Conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9), 3286-3294.
13- Jiménez-Muñoz, J. C., Cristobal, J., Sobrino, J. A., Sأ²ria, G., Ninyerola, M., & Pons, X. (2008). Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE transactions on geoscience and remote sensing, 47(1), 339-349.
14- Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristóbal, J. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and remote sensing letters, 11(10), 1840-1843.
15- Kamran, K. V., Pirnazar, M., & Bansouleh, V. F. (2015). Land surface temperature retrieval from Landsat 8 TIRS: comparison between split window algorithm and SEBAL method. Paper presented at the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015).
16- Kuenzer, C., & Dech, S. (2013). Thermal infrared remote sensing. Remote Sensing and Digital Image Processing. doi, 10(1007), 978-994.
17- Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., . . . Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14-37.
18- Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., & Berger, M. (2012). Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote sensing of environment, 120, 91-101.
19- McMillin, L. M. (1975). Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of geophysical research, 80(36), 5113-5117.
20- Nie, J., Ren, H., Zheng, Y., Ghent, D., & Tansey, K. (2020). Land Surface Temperature and Emissivity Retrieval From Nighttime Middle-Infrared and Thermal-Infrared Sentinel-3 Images. IEEE Geoscience and Remote Sensing Letters.
21- North, P., Brockmann, C., Fischer, J. r., Gomez-Chova, L., Grey, W., Heckel, A., . . . Regner, P. (2008). MERIS/AATSR synergy algorithms for cloud screening, aerosol retrieval and atmospheric correction. Paper presented at the proc. 2nd meris/aatsr user workshop, esrin, frascati.
22- Prata, A., Caselles, V., Coll, C., Sobrino, J., & Ottle, C. (1995). Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sensing Reviews, 12(3-4), 175-224.
23- Qian, Y.-G., Li, Z.-L., & Nerry, F. o. (2013). Evaluation of land surface temperature and emissivities retrieved from MSG/SEVIRI data with MODIS land surface temperature and emissivity products. International journal of remote sensing, 34(9-10), 3140-3152.
24- Ruescas, A., Danne, O., Fomferra, N., & Brockmann, C. (2016). The Land Surface Temperature Synergistic Processor in BEAM: A Prototype towards Sentinel-3. Data, 1(3), 18.
25- Shrestha, A., Angal, A., & Xiong, X. (2018). Evaluation of MODIS and Sentinel-3 SLSTR thermal emissive bands calibration consistency using Dome C. Paper presented at the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV.
26- Sobrino, J., Jiménez-Muñoz, J., Sòria, G., Ruescas, A., Danne, O., Brockmann, C., . . . Merchant, C. (2016). Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data. Remote sensing of environment, 179, 149-161.
27- Sobrino, J., Jiménez-Muñoz, J., Brockmann, C., Ruescas, A., Danne, O., North, P., ... & Mitraka, Z. (2012, October). Land surface temperature retrieval from Sentinel 2 and 3 Missions. Paper presented at the Proceedings of the Sentinel-3 OLCI/SLSTR and MERIS/(A) ATSR Workshop, Frascati, Italy.
28- Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Ruescas, A. B., Danne, O., Brockmann, C., ... & Berger, M. (2016). Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data. Remote Sensing of Environment, 179, 149-161.
29- Sobrino, J., Li, Z., Stoll, M., & Becker, F. (1996). Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17(11), 2089-2114.
30- Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., ... & Martínez, P. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE transactions on geoscience and remote sensing, 46(2), 316-327.
31- Tang, B.-H. (2018). Nonlinear split-window algorithms for estimating land and sea surface temperatures from simulated chinese gaofen-5 satellite data. IEEE Transactions on Geoscience and Remote Sensing, 56(11), 6280-6289.
32- Wan, Z., & Li, Z.-L. (1997). A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 980-996.
33- Wan, Z., & Li, Z. L. (2008). Radiance‐based validation of the V5 MODIS land‐surface temperature product. International Journal of Remote Sensing, 29(17-18), 5373-5395.
34- Wan, Z., Zhang, Y., Zhang, Q., & Li, Z.-L. (2004). Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25(1), 261-274.
35- Zheng, Y., Ren, H., Guo, J., Ghent, D., Tansey, K., Hu, X., ... & Chen, S. (2019). Land surface temperature retrieval from sentinel-3A sea and land surface temperature radiometer, using a split-window algorithm. Remote Sensing, 11(6), 650.