داده کاوی وکاوش وضع موجود الگوی مکانی استقرار کاربری های شهری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سیستم اطلاعات مکانی - دانشکده مهندسی ژئودزی و ژئوماتیک- دانشگاه خواجه نصیرالدین طوسی

2 دانشیار دانشکده مهندسی ژئودزی و ژئوماتیک- دانشگاه صنعتی خواجه نصیرالدین طوسی

10.22131/sepehr.2021.247877

چکیده

غالباً در تهیه طرح کاربری اراضی شهری از استانداردها و قواعد مبتنی بر دانش کارشناسی استفاده میشود. اما آنچه که در نهایت در فضای فیزیکی و واقعی شهر اتفاق میافتد، گاهی با قواعد اولیه بنا نهاده شده در تدوین طرحهای کاربری اراضی، همخوانی ندارد. در این تحقیق با استفاده از روش دادهکاوی تلاش شده است تا با کمک تحلیلهای مکانی، روش قواعد انجمنی و درخت تصمیم، به استخراج الگوهای استقرار وضع موجود کاربریهای شهری در ناحیه 4 منطقه 5 شهرداری تهران پرداخته شود و میزان تأمین استانداردها و قواعد مبتنی بر دانش کارشناسی با آنچه در وضع موجود شهر وجود دارد، مورد سنجش و تحلیل قرار گیرد. بهعنوان نمونه، استخراج قواعد استقرار دبستان در همسایگی 300 متری کاربریهای مسکونی با 70 درصد پشتیبان و همچنین مدرسه راهنمایی در همسایگی 1200 متری کاربریهای مسکونی با 98 درصد پشتیبان، حاکی از استقرار و انطباق مناسب وضع موجود کاربریهای آموزشی سطح محله و ناحیه در منطقه مطالعه موردی است. در حالیکه عدم استخراج قواعد مرتبط با کاربری درمانی در منطقه مطالعه موردی، حاکی از عدم استقرار این کاربری در شعاع استقرار مذکور در استانداردهای مرسوم برنامهریزی کاربری اراضی شهری است.

کلیدواژه‌ها


عنوان مقاله [English]

Exploring the spatial pattern of urban land uses by utilizing data mining methods

نویسندگان [English]

  • Zahra Bahari Sojahrood 1
  • Mohammad Taleai 2
1 Phd student in GIS, Faculty of Geodesy and Geomatics., K.N. Toosi University of Technology
2 Associate Professor of GIS, Faculty of Geodesy and Geomatics., K.N. Toosi University of Technology
چکیده [English]

Extended Abstract
Introduction
The most important challenge in urban land use planning is the spatial organization of urban activities and functions based on the needs of urban society. Extracting the current rules that exist in the city not only adds local conditions to the standard values mentioned in various instructions (Habib et al, 1999; Shiea 2018; Saeedinia 2004) but also makes it possible to analyze with comparing the existing conditions of the city with the standards. There is some research to examine the current situation of the city. Most of these studies have used statistical methods (Hosseinzadeh et al. 1399; Omidipour et al, 2017; Mohammadnejad et al. 2012).
A few of them have utilized data mining methods, but none of these studies examine existing patterns between one type of land use with other land uses. In addition, the method used in this research is a new method that tries to use the capabilities of association rules and decision trees in exploring co-located patterns by combining these methods.Therefore, considering the importance and necessity of addressing this issue, the purpose of this research is to explore the current situation of urban land use by using data mining methods to discover the current patterns in the location of land uses in the vicinity and at different distances.
Finally, providing rules derived from these models may help planners and managers to understand the current status of land use appropriately and improve urban land-use plans by utilizing them in combination with standards and rules based on expert knowledge.
 
Materials & Methods
Spatial association rules
Association rules discover the laws of interdependence between the data of a large database. In other words, patterns that are frequently repeated in the data set are identified and used to explain the rules of dependence (Han & et al, 2011: 54; Li 2015). The rules of the association in which one of the propositions in the premise or sequence contains a spatial relation are called spatial association rules (Geissen & et al, 2007: 277-287, Mennis & et al, 2005: 5-17).
 
Decision Tree
The decision tree is one of the most powerful and common techniques for classification and prediction. Among the algorithms used to construct the decision tree, the most important is the C5 algorithm which is the developed ID3 algorithm.
 
Methodology
A n*l transaction matrix is generated. Where n is the number of available features and l represents the number of types of land use studied, which is 19 in this article. The elements of this matrix can be zero or one.
To fill the transaction matrix, we first consider the distance and apply buffer analysis for all the features in the land use layer. Then, for each feature, we intersect the buffer layer of that feature with the land-use layer and extract all the features that appeared at the intersection. Arc GIS software was used to perform spatial analysis.
Then, to extract the current rules of land use in the urban environment, the a priori algorithm is selected as one of the association rules algorithms, and the C5 algorithm is selected as one of the decision tree algorithms.
In this research, the user data of neighborhood 4, district 5 of Tehran Municipality, including 1065 property plots, were used.
 
Results & Discussion
In this step, the proposed model for deriving the rules of land use dependence based on the current situation of land use in the study area is implemented step by step and the results are presented.
According to existing standards, three distances are considered to extract spatial rules with an apriori algorithm. After extracting the rules, they are compared with the values of approved standards in urban land use planning. Vicinity and compatibility are examples of indicators in common standards for locating and determining land use for the land. Using the extracted rules, the indicators are examined.
Due to the lack of extraction of some rules by association rules, for example, not extracted rules related to therapeutic land uses within 300 meters from residential land uses, we use the decision tree algorithm to extract related rules in more detail. The graphs obtain from the decision tree shows which land uses are effective for predicting and categorizing specific land uses, based on the current status of the land uses located in the case study area.
 
Conclusion
The purpose of this paper is to data mining the current status of urban land uses to extract the rules of neighborhood and proximity of different land uses. Using the proposed model in this article, it is possible to extract the existing rules of land uses in detail and as well as to evaluate its compliance with conventional standards and criteria in urban land use planning.
 

کلیدواژه‌ها [English]

  • Spatial data mining
  • Urban land use planning
  • Association rules
  • Decision tree
1- امیدی­ پور، نیسانی سامانی، تومانیان، فرجی سبکبار؛ مرتضی، نجمه، آرا، حسنعلی. توسعه یک سیستم پشتیبان تصمیم­ گیری مکانی (SDSS) با رویکردی آمایشی در تحلیل تناسب اراضی. برنامه ­ریزی و آمایش فضا. 1397; 22 (2) :1-22
2- پورمحمدی، محمدرضا، 1396، برنامه ­ریزی کاربری اراضی شهری، سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه ­ها (سمت)، 166.
3- تیمورپور، علیزاده، غضنفری؛ بابک، سمیه، مهدی، 1395، داده­ کاوی و کشف دانش، دانشگاه علم و صنعت ایران، چاپ پنجم، 403.
4- حبیبی، مسائلی؛ سیدمحسن، صدیقه، 1378، سرانه کاربری­ های شهری، سازمان ملی زمین و مسکن.
5- حسین­ زاده، استعلاجی، دانیالی؛ نعمت، علیرضا، تهمینه. طراحی مدلی مکان محور برای ارزیابی مکانی- فضایی کاربری اراضی شهری با رویکرد مدیریت بحران - مورد پژوهش: منطقه 19 شهرداری تهران. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر», 1399; 29(115): 139-159.
6- سعیدنیا، احمد، 1383، کتاب سبز راهنمای شهرداری­ ها، جلد دوم: کاربری زمین شهری، سازمان شهرداری ها و دهیاری­ های کشور.
7- سلیمان­ پور، مصباح، هدایتی؛ سیدمسعود، سیدحمید، بهرام، 1397، کاربرد تکنیک داده کاوی درخت تصمیم CART در تعیین مؤثرترین فاکتورهای کیفیت آب آشامیدنی (مطالعه موردی: دشت کازرون استان فارس)، سلامت و محیط زیست، 11(1)،1-14.
8- شیعه، اسماعیل، 1397، مقدمه ­ای بر مبانی برنامه ­ریزی شهری، انتشارات دانشگاه علم و صنعت ایران.
9- محمدنژاد، لشگری، سلیمانی؛ علی، علی­ اصغر، منصور. ارزیابی تحقق­ پذیری کاربری زمین در طرح­ های توسعه شهری (مطالعه موردی: طرح تفصیلی منطقه 22 تهران). پژوهش­ های دانش زمین، 1391; 3(4): 94-110.
10- Aggarwal S, Sindhu R. 2015. An approach to improve the efficiency of apriori algorithm. PeerJ PrePrints 3: e1159v1
11- Agrawal, R., Imielinski, T., Swami, A.N., “Mining association rules between sets of items in large databases”, In: Proceeding soft he 1993 ACM SIGMOD International Conference on Management of Data., 1993.
12- Agrawal, R., Srikant, R., “Fast algorithms for mining association rules”, In: Proceedings of 20th International Conference Very Large Databases., 1994.
13- Ding, Z., Liao, X., Su, F., Fu, D., Mining Coastal Land Use Sequential Pattern and Its Land Use Associations Based on Association Rule Mining, Remote Sensing 9:2, 2017.
14- Geissen, Kampichler, López-de Llergo-Juárez & Galindo-Acántara, V., C., J., “A. Superficial and subterranean soil erosion in Tabasco, tropical Mexico: development of a decision tree modeling approach”. Geoderma, 139(3-4), 2007.
15- Gharbi, A., de Runz, C., Faiz, S., and Akdag H., An Association Rules Based Approach to Predict Semantic Land Use Evolution in the French City of Saint-Denis, International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 10(2), 2014.
16- Han, J., Kamber, M., Pei, J., “Data Mining: Concepts and Techniques, 3 rd ed”. The Morgan Kaufmann Series in Data Management Systems Morgan Kaufmann Publishers, 2011.
17- Kim, J., Kang, Y., Hong, S., Park, S. Extraction of Spatial Rules Using a Decision Tree Method: A Case Study in Urban Growth Modeling. Knowledge-Based Intelligent Information and Engineering Systems. Lecture Notes in Computer Science, volume 4251. Springer, Berlin, Heidelberg, 2006.
18- Liu, Y., Xie, P., He, O., Zhao, X., Wei, X., & Tan, R., A new method based on association rules mining and geo-filter for mining spatial association knowledge, Chinese Geographical Science, 27, 389–401, 2017.
19- Mamoulis N. (2008) Co-location Patterns, Algorithms. In: Shekhar S., Xiong H. (eds) Encyclopedia of GIS. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35973-1_152.
 20- Mennis, J., and Liu, J., Mining Association Rules in Spatial-Temporal Data: An Analysis of Urban Socioeconomic and Land Cover Change. Trans. GIS 9، 2005.
21- Shekhar, S., Huang, Y. Co-location rules mining: a summary of results, The 7th Int. Symp. on Spatial and Temporal Databases, 12-15 July 2001, 236, 2001.
22- Soltani, S. R., Monavari, S. M.  and Mahiny, A. S., Urban land use management, based on GIS and multicriteria assessment (Case study: Tehran Province, Iran), 2011 International Conference on Multimedia Technology, 2011, pp. 6644-6647, doi: 10.1109/ICMT.2011.6001730.
23- Wang, F., Application of multidimensional association rule techniques in manufacturing resource planning system, presented at the 7th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Ministry of Education Tianjin, China, 2010.
24- Yan, J., Xiao, R., Su, F., Wang, T., Bai, J., Jia, F., Du J. & Zhao, S. Mining the association rules between port shoreline and land utilization intensity: a case study in the coastal zone of Kuala Lumpur, Malaysia, Geocarto International, 2020.
25- Yao, X., Chen, L., Peng, L., Chi, T. A co-location pattern-mining algorithm with a density-weighted distance thresholding consideration, Information Sciences, Volume 396,2017, Pages 144-161.
26- Yue, H.; Zhu, X.; Ye, X.; Guo, W. The Local Colocation Patterns of Crime and Land-Use Features in Wuhan, China. ISPRS Int. J. Geo-Inf. 2017, 6, 307. https://doi.org/10.3390/ijgi6100307.
27- Zeng, L., Wang, B., Fan, L., & Wu, J., Analyzing sustainability of Chinese mining cities using an association rule mining approach, Resources Policy, 49(C), 394-404, 2016.
28- Zhou, G.; Li, Q.; Deng, G. Maximal Instance Algorithm for Fast Mining of Spatial Co-Location Patterns. Remote Sens. 2021, 13, 960. https://doi.org/10.3390/rs13050960.