ارائه روشی مبتنی بر ترکیب و رأی گیری با هدف تحلیل مشاهدات ماهانه ایستگاه های پایش کیفیت هوا با استفاده از تصاویر ماهواره ای - مطالعه موردی: شهرستان اراک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری فتوگرامتری و سنجش از دور، عضو هیأت علمی گروه مهندسی نقشه برداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک

2 دکتری حمل و نقل و ترافیک، عضو هیأت علمی گروه مهندسی نقشه برداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک

10.22131/sepehr.2022.254781

چکیده

یکی از مهمترین چالش­های امروز در دنیا و ایران افزایش آلودگی هوا ناشی از افزایش جمعیت، توسعه صنعتی و تغییرات اقلیمی است. از اینرو پایش کیفیت هوای شهرها بهصورت مستمر امری ضروری بهنظر میرسد. از اصلی­ترین تجهیزات پایش آلودگی هوا، ایستگاههای زمینی پایش کیفیت هوا میباشند. مشاهدات پایش کیفیت هوا با استفاده از ایستگاههای زمینی به علت تراکم پایین، توزیع مکانی غیریکنواخت، لزوم نگهداری و کالیبراسیون منظم و دورهای و نیاز مبرم به مکان­یابی بهینه برای نصب، گاهی اوقات دچار اختلال میشود و اینگونه بهنظر میرسد که صحت برخی مشاهدات مبهم میباشند. در کنار ایستگاههای زمینی، تصاویر ماهوارهای نیز بهمنظور پایش کیفیت هوا قابل استفاده میباشند. این تصاویر هیچکدام از نقاط ضعف ایستگاههای زمینی پایش را ندارند و نتایج صحیحی ارائه می­دهند، اگرچه قدرت تفکیک زمانی و دقت اندازهگیری پایینتری دارند. در این مطالعه هدف مقایسه مشاهدات صورت گرفته توسط ایستگاههای پایش کیفیت هوا با مشاهدات ماهواره سنتینل-5 و آنالیز آنها میباشد. از اینرو روشی مبتنی بر ترکیب و رأی­گیری از مشاهدات ارائه میشود. روش پیشنهادی بر روی چهار آلاینده دیاکسید نیتروژن، دیاکسید گوگرد، مونوکسید کربن و ازن پایش شده از چهار ایستگاه مخابرات، محیط زیست، شریعتی و استانداری شهرستان اراک در بازه زمانی 19 ماهه از مهر ماه 1398 الی فروردین 1400 (بجز ماههایی که ایستگاههای زمینی مشاهداتی ثبت نکرده­اند) پیادهسازی شده است. نتایج آزمایشها نشان میدهد که در صحت برخی از مشاهدات زمینی تردید وجود دارد که میتواند ناشی از عدم سلامت و یا کالیبراسیون منظم این دستگاه­ها و یا  عدم مکان­یابی ایده­آل آنها باشد. با حذف مشاهدات ناصحیح از مجموعه مشاهدات زمینی، خطای جذر میانگین مربعات از 2% تا 47% بهبود حاصل می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Proposing a method based on composition and voting for the analysis of monthly observations made by air quality monitoring stations using zatellite images - Case study: Arak city

نویسندگان [English]

  • Mohammad Amin Ghannadi 1
  • Matin Shahri 2
1 Department of surveying engineering, Arak University of Technology, Arak, Iran
2 Department of surveying engineering, Arak University of Technology, Arak, Iran
چکیده [English]

Extended Abstract
Introduction
Air pollution is now considered to be one of the most important challenges Iran faces and plays a major role in changes of its climate. Factors such as population growth and the consequent increase in the number of cars, as well as the presence of various (and often old) industries and the energy demand they satisfy have led to an increase in pollution in many Iranian metropolises. As one of the four Iranian industrial hubs, Arak has one of the worst air quality in this country. In addition to the presence of industries, having a relatively high population density (and consequently high traffic congestion level) and various climatic conditions affect the quality of air in Arak. It is essential to accurately measure air pollutants with a high spatial and temporal resolution, determine their distribution pattern and level of effectiveness, and provide provincial and national managers with applicable solutions. Unfortunately, air quality monitoring stations are not sufficiently and properly distributed in Iran. Many Iranian cities do not have even a single air monitoring station and many others have only one station. As the capital city of Markazi province and an industrial city, Arak has only four monitoring stations which are not simultaneously active in many cases. Failing to conduct proper site selection before the installation of ground-based monitoring stations results in local irregularities in the recorded concentration of pollutants. Furthermore, the stations are not usually calibrated on time and thus air quality monitoring observations are disrupted. In these cases, either this data is deleted from the final results or the station will be inactivated (for example, for a week or a month) by authorities. However, it seems that the observations made by these stations still include inaccurate data.
 
Materials and Methods
The present study has introduced a method based on composition and voting to validate the observations made by air quality monitoring stations using Sentinel-5 satellite images. Arak city was used as the study area. Level three images (L3) of the Sentinel-5 TROPOMI sensor received from the Google Earth Engine were used to monitor the concentration of pollutants in the present study. Sentinel-5 is a powerful atmospheric monitoring tool. Equipped with a spectrometer called TROPOMI, the satellite measures ultraviolet radiation reaching the Earth's surface in a high range. TROPOMI sensor is highly capable of imaging and monitoring a large number of pollutants. The present study has compared the concentration of NO2, SO2, CO and ozone pollutants monitored by ground-based stations in Arak city with Sentinel-5 images. Since the time resolution of ground-based observations is higher than satellite observations, a monthly average of pollutants' concentrations was calculated to increase the reliability of observations. In other words, the concentrations of pollutants were compared on a monthly basis. The proposed method has assumed that more accurate sets of ground observations show a higher linear correlation with satellite observations.
In order to select the appropriate set, the number of observations with an acceptable accuracy must be determined. To do so, a method based on a mixture of composition and voting has been used. As previously mentioned, each observation showed average pollutant concentration in a specific month of the study period. The process started with at least four monthly observations. As a result, assuming that all 19 monthly observations were available, 16 subsets were obtained with a maximum linear correlation between ground-based observations and their satellite correspondence which showed the accuracy of the observations. The second step was the proposed voting method which showed that the monthly ground-based observations (for example October 1398) were repeated several times. The high frequency of a monthly observation indicated its higher accuracy. The presence of this particular observation in different permutations has increased the linear correlation coefficient of the observations. Therefore, for an instance a frequency of 15 or 16 for the observation made by the ground-based station in October 2017 indicated high accuracy of the observation.
 
Results and Discussion
The present study has compared the concentration of NO2, SO2, CO and ozone pollutants Using the proposed method, some observations have been identified as outliers or errors. RMSE criterion was used to evaluate the accuracy of the proposed method. Some observations made by the ground-based station were not consistent with other ground-based and satellite observations, and removing them increased the correlation coefficient. Removing outliers from the observations, the RMSE (originally 2%) was improved and reached 47%.
 
Conclusion
Findings indicated that some observations made by ground-based monitoring stations were incorrect, or at least the stations had sometimes failed to exhibit the real general trend of environmental pollution correctly due to local irregularities caused by various reasons, such as improper location or lack of proper calibration.

کلیدواژه‌ها [English]

  • Air pollution
  • Air quality ground-based monitoring station
  • Sentinel-5 images
1- سپهرنیا، شهرام، (1394)، دوره آموزشی راهبری ایستگاه‌های پایش کیفی هوای محیط، سازمان حفاظت محیط زیست
2- Aljammaz, A., Sultan, M., Izadi, M., Abotalib, A. Z., Elhebiry, M. S., Emil, M. K., Abdelmohsen, K., Saleh, M., & Becker, R. (2021). Land Subsidence Induced by Rapid Urbanization in Arid Environments: A Remote Sensing-Based Investigation. Remote Sensing, 1109, (6) 13.
3- Borsdorff, T., Aan de Brugh, J., Hu, H., Aben, I., Hasekamp, O., & Landgraf, J. (2018). Measuring carbon monoxide with TROPOMI: First results and a comparison with ECMWF‐IFS analysis data. Geophysical Research Letters, 45(6), 2826-2832.
4- Bray, C. D., Nahas, A., Battye, W. H., & Aneja, V. P. (2021). Impact of lockdown during the COVID-19 outbreak on multi-scale air quality. Atmospheric Environment, 254, 118386.
5- Caiazzo, F., Ashok, A., Waitz, I. A., Yim, S. H., & Barrett, S. R. (2013). Air pollution and early deaths in the United States. Part I: Quantifying the impact of major sectors in 2005. Atmospheric Environment, 79, 198-208.
6- Chowdhury, S., & Dey, S. (2016). Cause-specific premature death from ambient PM2. 5 exposure in India: Estimate adjusted for baseline mortality. Environment international, 91, 283-290.
7- Cooper, M. J., Martin, R. V., McLinden, C. A., & Brook, J. R. (2020). Inferring ground-level nitrogen dioxide concentrations at fine spatial resolution applied to the TROPOMI satellite instrument. Environmental Research Letters, 15(10), 104013.
8- de Vries, J., Voors, R., Ording, B., Dingjan, J., Veefkind, P., Ludewig, A., Kleipool, Q., Hoogeveen, R., & Aben, I. (2016). TROPOMI on ESA’s Sentinel 5p ready for launch and use. Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016),
9- Fan, C., Li, Y., Guang, J., Li, Z., Elnashar, A., Allam, M., & de Leeuw, G. (2020). The impact of the control measures during the COVID-19 outbreak on air pollution in China. Remote Sensing, 12(10), 1613.
10- Frantz, D., Röder, A., Udelhoven, T., & Schmidt, M. (2016). Forest disturbance mapping using dense synthetic landsat/MODIS time-series and permutation-based disturbance index detection. Remote Sensing, 8(4), 277.
11- Ghahremanloo, M., Lops, Y., Choi, Y., & Mousavinezhad, S. (2021). Impact of the COVID-19 outbreak on air pollution levels in East Asia. Science of The Total Environment, 754, 142226.
12- Ghannadi, M., Shahri, M., & Moradi, A. (2021). Modeling The Effect of Nitrogen Dioxide Produced In Shazand Power Plant Upon Air Pollution In Arak, Iran Using Sentinel-5 Satellite Data.
13- Ghannadi, M. A., Alebooye, S., Izadi, M., & Moradi, A. (2020). A method for Sentinel-1 DEM outlier removal using 2-D Kalman filter. Geocarto International, 1-15.
14- Ghude, S. D., Chate, D., Jena, C., Beig, G., Kumar, R., Barth, M., Pfister, G., Fadnavis, S., & Pithani, P. (2016). Premature mortality in India due to PM2. 5 and ozone exposure. Geophysical Research Letters, 43(9), 4650-4658.
15- Hedelt, P., Efremenko, D. S., Loyola, D. G., Spurr, R., & Clarisse, L. (2019). Sulfur dioxide layer height retrieval from Sentinel-5 Precursor/TROPOMI using FP_ILM. Atmospheric Measurement Techniques, 12(10).
16- Ialongo, I., Virta, H., Eskes, H., Hovila, J., & Douros, J. (2020). Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmospheric Measurement Techniques, 13(1).
17- Islam, M. S., Tusher, T. R., Roy, S., & Rahman, M. (2021). Impacts of nationwide lockdown due to COVID-19 outbreak on air quality in Bangladesh: a spatiotemporal analysis. Air Quality, Atmosphere & Health, 14(3), 351-363.
18- Jeong, U., & Hong, H. (2021). Assessment of Tropospheric Concentrations of NO2 from the TROPOMI/Sentinel-5 Precursor for the Estimation of Long-Term Exposure to Surface NO2 over South Korea. Remote Sensing, 13(10), 1877.
19- Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367-371.
20- Lorente, A., Boersma, K., Eskes, H., Veefkind, J., Van Geffen, J., de Zeeuw, M., van der Gon, H. D., Beirle, S., & Krol, M. (2019). Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI. Scientific reports, 9(1), 1-10.
21- Magro, C., Nunes, L., Gonçalves, O. C., Neng, N. R., Nogueira, J. M., Rego, F. C., & Vieira, P. (2021). Atmospheric Trends of CO and CH4 from Extreme Wildfires in Portugal Using Sentinel-5P TROPOMI Level-2 Data. Fire, 4(2), 25.
22- Moradi, A. R., & Ghannadi, M. A. (2020). Presenting a method for the improvement of Sentinel-1 generated DEM, using SRTM and 2D wavelet transform. Scientific-Research Quarterly of Geographical Data (SEPEHR), 29(115), 35-48.
23- Omrani, H., Omrani, B., Parmentier, B., & Helbich, M. (2020). Spatio-temporal data on the air pollutant nitrogen dioxide derived from Sentinel satellite for France. Data in brief, 28, 105089.
24- Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: a review. Remote Sensing, 12(14), 2291.
25- Quesada-Ruiz, S., Attié, J.-L., Lahoz, W. A., Abida, R., Ricaud, P., Amraoui, L. E., Zbinden, R., Piacentini, A., Joly, M., & Eskes, H. (2020). Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition. Atmospheric Measurement Techniques, 13(1), 131-152.
26- Safarianzengir, V., Sobhani, B., Yazdani, M. H., & Kianian, M. (2020). Monitoring, analysis and spatial and temporal zoning of air pollution (carbon monoxide) using Sentinel-5 satellite data for health management in Iran, located in the Middle East. AIR QUALITY ATMOSPHERE AND HEALTH.
27- Saxena, P., & Naik, V. (2018). Air pollution: sources, impacts and controls. CABI.
28- Shen, H., Lin, Y., Tian, Q., Xu, K., & Jiao, J. (2018). A comparison of multiple classifier combinations using different voting-weights for remote sensing image classification. International journal of remote sensing, 39(11), 3705-3722.
29- Shikwambana, L., Mhangara, P., & Mbatha, N. (2020). Trend analysis and first-time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. International Journal of Applied Earth Observation and Geoinformation, 91, 102130.
30- Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., Pedergnana, M., Arellano, S., Galle, B., & Fernandez, D. (2019). Global monitoring of volcanic SO 2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Scientific reports, 9(1), 1-10.
31- Toming, K., Kutser, T., Uiboupin, R., Arikas, A., Vahter, K., & Paavel, B. (2017). Mapping water quality parameters with sentinel-3 ocean and land colour instrument imagery in the Baltic Sea. Remote Sensing, 9(10), 1070.
32- Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., De Smedt, I., Grutter, M., Hannigan, J. W., & Jones, N. (2020). TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmospheric Measurement Techniques, 13(7), 3751-3767.
33- Vîrghileanu, M., Săvulescu, I., Mihai, B.-A., Nistor, C., & Dobre, R. (2020). Nitrogen Dioxide (NO2) Pollution Monitoring with Sentinel-5P Satellite Imagery over Europe during the Coronavirus Pandemic Outbreak. Remote Sensing, 12(21), 3575.