ارزیابی توابع مختلف TIMESAT در بازسازی روند فنولوژی پوشش گیاهی - مطالعه موردی: شهرستان خرم آباد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی تهران

2 استادیار سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی تهران

10.22131/sepehr.2022.254786

چکیده

مطالعه روند رشد پوشش گیاهی بهطور ویژهای برای تحقیقات محیط زیستی مهم است. برآورد پارامترهای فنولوژی پوشش گیاهی به دادههای زمانی پیوسته NDVI در یک بازه زمانی نیاز دارد. ممکن است در برخی موارد رطوبت خاک، وجود ابر و ذرات معلق بر انرژی بازتابی از پوشش گیاهی اثر بگذارد و منجر به ایجاد تصاویری با دادههای از دست رفته یا دارای خطا شود. در این مطالعه از چهار مزرعه گندم واقع در بخشهای مختلف شهرستان خرمآباد، برای بررسی رفتار فنولوژی گیاه و استخراج پارامترهای فنولوژی استفاده شد. بهاین منظور برای از بین بردن این خطاها در سری زمانی NDVI از مدل TIMESAT استفاده شد. سه تابع مختلف برای از بین بردن نویزها و هموارسازی دادهها در مدل TIMESAT وجود دارد. هدف از این تحقیق بررسی عملکرد توابع گاوسین نامتقارن، لجستیک دوگانه و فیلتر انطباقی ساویتزکی-گولای در استخراج پارامترهای فنولوژیکی خصوصاً در مناطق کوهستانی است. در ابتدا شاخص NDVI با استفاده از دادههای روزانه سنجنده MODIS برای سال 2020 در سامانه گوگل ارث انجین محاسبه شد. پس از برطرف کردن خطاهای موجود در سری زمانی NDVI، از مدل TIMESAT بهمنظور تولید منحنی فنولوژی گیاه گندم در مزارع گرمسیر و سردسیر در نرمافزار TIMESAT3.3 استفاده شد. از توابع گاوسین نامتقارن، لجستیک دوگانه و فیلتر ساویتزکی-گولای برای بازسازی دادههای NDVI استفاده شد. طبق نتایج بهدست آمده فیلتر هموارسازی ساویتزکی-گولای بهطور میانگین RMSE برابر 2 دارد. ولی میانگین RMSE توابع گاوسین نامتقارن و لجستیک دوگانه به ترتیب 4 و 11 است. در نتیجه فیلتر ساویتزکی-گولای در بازسازی دادهها و برآورد پارامترهای شروع و پایان فصل رشد دارای صحت بالاتری است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating different TIMESAT models used to reconstruct the phenological trend of Vegetation in Khorramabad

نویسندگان [English]

  • Leyla Karami 1
  • Seyed Mohammad Tavakkoli Sabour 2
  • Ali Asghar Torahi 2
1 Department of remote sensing and GIS, Faculty of geographical sciences, Kharazmi University, Tehran, Iran
2 Department of remote sensing and GIS, Faculty of geographical sciences, Kharazmi University, Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
Vegetation is considered to be one of the most important elements in all major ecosystems on the Earth. Thus, a proper understanding of vegetation and its growth trends and other environmental factors has always been of particular importance for environmental research. Estimating vegetation phenology parameters (VPPs) requires continuous NDVI data collection over a specific period of time. However, soil moisture, cloud cover, and particulate matter may affect the energy reflected from the vegetation cover and result in noisy images or erroneous data. Vegetation phenology parameters cannot be extracted from raw data due to the presence of random errors. These errors do not follow the phenological process and thus, overestimate or underestimate NDVI and fail to produce accurate results. Smoothing functions and especially the TIMESAT model are used to resolve this issue and eliminate errors in the NDVI time series. There is still no general consensus on which function acts more efficient and accurate in the TIMESAT model especially regarding the highlands. Naturally, each method yields different results in different regions, and thus it is necessary to compare and evaluate different functions used in the TIMESAT model and determine their accuracy in producing a continuous time series. The present study aimed to evaluate the performance of various functions such as asymmetric Gaussian (AG), double-logistic (DL), and Savitzky–Golay (SG) used to extract VPPs especially in mountainous regions.
 
Materials and Methods
TIMESAT model is a time-series analysis model based on remote sensing (RS) vegetation indices. It includes three functions: Savitzky–Golay, asymmetric Gaussian, and double-logistic, which are used to smooth collected data and identify outliers. Savitzky–Golay is an adaptive-degree polynomial filter (ADPF). The other two functions fit the information using nonlinear functions. These functions use unmodified NDVI data as input to produce modified and smoothed NDVI output. Four wheat farms in cold and warm regions of Khorramabad were used in the present study to investigate plant phenological behaviors and extract VPPs. The northern and eastern parts of Khorramabad have a cold climate, while the southern and western parts have a warm climate. One-year time series (2020) data of MODIS sensor was used in the present study. Using the infrared and near-infrared spectral reflectance values, NDVI was calculated in the Google Earth Engine environment. Errors of the NDVI time series were first corrected and a phenology curve was produced for wheat in both warm and cold farms. Asymmetric Gaussian, double-logistic, and Savitzky–Golay filter functions were also used to adapt the NDVI data. Following the reconstruction of growth curves in the time series of vegetation indices and smoothing the curve, various VPPs such as start of the season (SOS), end of the season (EOS), middle of the season (MOS), length of the growing season (LOS), base limit and value, maximum NDVI, vegetation growth season range, large seasonal integral, and small seasonal integral were extracted.
 
Results and Discussion
The model indicated that on average, beginning of the wheat growing season (SOS) in the warm regions of Khoramabad coincided with the 31.5th day of the year in the Gregorian calendar, whereas it happened on the 90th day of the year in the cold regions, thus indicating a 1.5-2 month difference between the beginning of the wheat growing season in cold and warm regions. The wheat growing season ended (EOS) on the 163rd day of year in the warm regions and on the 193rd day in the cold regions. In addition, in order to analyze the effect of climate on VPPs such as SOS and EOS, a comparison was made between the parameters obtained from farms in warm and cold regions. On average, the peak of vegetation growth has occurred in late March (Mar. 28, 2020) in farms of warm regions while cold regions experienced the peak of growth on May 20, 2020. In other words, warm regions have experienced peak growth approximately two months earlier than cold regions. Finally, the models were assessed and obtained values were compared with ground-based data collected in field surveys. Validation results showed that with an average RMSE of 2, Savitzky–Golay smoothing model reconstruct data more accurately as compared to asymmetric Gaussian, and double logistic function with an RMSE of 4 and 11, respectively. In other words, Savitzky–Golay estimates SOS and EOS with a higher accuracy and lower errors.
 
Conclusion
Findings indicate that Savitzky–Golay filter outperformed asymmetric Gaussian and double logistic functions in extracting VPPs in mountainous areas. Accordingly, it is suggested to use Savitzky–Golay in future studies aiming to investigate the phenological behavior of different vegetation covers in other Iranian highlands. The study has also showed that different climatic conditions within the study area affect plant phenological behaviors, which can lead to differences in SOS, peak of growing season, and EOS in different cold and warm regions of the province. Growing season of plants in cold regions of the province has occurred with an approximately two-month delay compared to the warm regions of the province.

کلیدواژه‌ها [English]

  • Phenology
  • Time series
  • Vegetation
  • NDVI
  • TIMESAT
1- ثنایی­‌نژاد، شاه‌طهماسبی، صدرآبادی‌حقیقی، کلارستانی؛ سیدحسین، امیررضا، رضا، کیومرث (1387)، مطالعه تغییرات طیف بازتابی مزارع گندم در مشهد با استفاده از تصاویر MODIS، علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، دوره 12 شماره 45 الف، ص 11-19
2- Beck, Pieter S A et al. 2006. “Improved Monitoring of Vegetation Dynamics at Very High Latitudes: A New Method Using MODIS NDVI.” Remote sensing of Environment 100(3): 321–34.
3- Blaes, Xavier et al. 2016. “Quantifying Fertilizer Application Response Variability with VHR Satellite NDVI Time Series in a Rainfed Smallholder Cropping System of Mali.” Remote Sensing  8(6).
4- Cai, Zhanzhang, Per Jönsson, Hongxiao Jin, and Lars Eklundh. 2017. “Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data.” Remote Sensing 9(12): 1271.
5- Cao, Ruyin, Miaogen Shen, Ji Zhou, and Jin Chen. 2018. “Modeling Vegetation Green-up Dates across the Tibetan Plateau by Including Both Seasonal and Daily Temperature and Precipitation.” Agricultural and Forest Meteorology 249: 176–86.5-
6-  Cao, Ruyin, Yang Chen, et al. 2018. “A Simple Method to Improve the Quality of NDVI Time-Series Data by Integrating Spatiotemporal Information with the Savitzky-Golay Filter.” Remote Sensing of Environment 217: 244–57.
7- Chen, Jin et al. 2004. “A Simple Method for Reconstructing a High-Quality NDVI Time-Series Data Set Based on the Savitzky–Golay Filter.” Remote sensing of Environment 91(3–4): 332–44.
8- Coppin, Pol et al. 2004. “Review ArticleDigital Change Detection Methods in Ecosystem Monitoring: A Review.” International journal of remote sensing 25(9): 1565–96.
9- Denny, Ellen et al. 2010. “A New Approach to Generating Research-Quality Phenology Data: The USA National Phenology Monitoring System.” Nature Precedings: 1.
10- Eklundh, L, and P Jönsson. 2012. “TIMESAT 3.1 Software Manual.” Lund University, Sweden: 1–82.
11- Geng, Liying et al. 2014. “Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China.” Remote Sensing 6(3): 2024–49.
12- Hoersch, Bianca, Gerald Braun, and Uwe Schmidt. 2002. “Relation between Landform and Vegetation in Alpine Regions of Wallis, Switzerland. A Multiscale Remote Sensing and GIS Approach.” Computers, Environment and Urban Systems 26(2–3): 113–39.
13- Hosseini, Seyed Zeinolabedin, and Hamid Reza Ghafarian Malamiri. 2017. “Reconstruction of MODIS NDVI Time Series Using Harmonic AN Alysis of Time Series Algorithm (HANTS).” The Journal of Spatial Planning 21(3): 221–55.
14- Huang, Zhibin et al. 2020. “Remote Sensing Monitoring of Vegetation Dynamic Changes after Fire in the Greater Hinggan Mountain Area: The Algorithm and Application for Eliminating Phenological Impacts.” Remote Sensing 12(1): 156.
15- Jonsson, Per, and Lars Eklundh. 2002. “Seasonality Extraction by Function Fitting to Time-Series of Satellite Sensor Data.” IEEE transactions on Geoscience and Remote Sensing 40(8): 1824–32.
16- Jönsson, Per, and Lars Eklundh. 2004. “TIMESAT—a Program for Analyzing Time-Series of Satellite Sensor Data.” Computers & geosciences 30(8): 833–45.
17- Julien, Yves, and José A Sobrino. 2010. “Comparison of Cloud-Reconstruction Methods for Time Series of Composite NDVI Data.” Remote Sensing of Environment 114(3): 618–25.
18- Lara, Bruno, and Marcelo Gandini. 2016. “Assessing the Performance of Smoothing Functions to Estimate Land Surface Phenology on Temperate Grassland.” International Journal of Remote Sensing 37(8): 1801–13.
19- Lu, Dengsheng, Paul Mausel, Eduardo Brondizio, and Emilio Moran. 2004. “Change Detection Techniques.” International journal of remote sensing 25(12): 2365–2401.
20- Magee, Teresa K, Paul L Ringold, and Michael A Bollman. 2008. “Alien Species Importance in Native Vegetation along Wadeable Streams, John Day River Basin, Oregon, USA.” Plant Ecology 195(2): 287–307.
21- Mehrnia, Mohammad. 2017. “Floristic Study of the Ghalaei-Kashkan Region (Lorestan).” Iranian Journal of Plant Biology 9(1): 21–44.
22- Mo, Yunhua et al. 2019. “Temporal and Spatial Dynamics of Phenology along the North–South Transect of Northeast Asia.” International Journal of Remote Sensing 40(20): 7922–40.
23- Rousta, Iman et al. 2020. “Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan.” Remote Sensing 12(15): 2433.
24- Savitzky, Abraham, and Marcel J E Golay. 1964. “Smoothing and Differentiation of Data by Simplified Least Squares Procedures.” Analytical chemistry 36(8): 1627–39.
25- Testa, Stefano, Enrico C Borgogno Mondino, and Chiara Pedroli. 2014. “Correcting MODIS 16-Day Composite NDVI Time-Series with Actual Acquisition Dates.” European Journal of Remote Sensing 47(1): 285–305.
26- Vetterling, William T et al. 1992. Numerical Recipes: Example Book C. Cambridge University Press.
27- Wu, Yangxue et al. 2020. “Investigating the Impact of Climate Warming on Phenology of Aphid Pests in China Using Long-Term Historical Data.” Insects 11(3): 167.
28- Yang, Yanjun et al. 2021. “Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky.” Remote Sensing 13(9): 1615.
29- Zhang, Junxue et al. 2021. “Evaluating the Impacts of Models, Data Density and Irregularity on Reconstructing and Forecasting Dense Landsat Time Series.” Science of Remote Sensing: 100023.
30- Zhang, Xiaoyang et al. 2003. “Monitoring Vegetation Phenology Using MODIS.” Remote sensing of environment 84(3): 471–75.
31- Zhou, Xuancheng et al. 2020. “Legacy Effect of Spring Phenology on Vegetation Growth in Temperate China.” Agricultural and Forest Meteorology 281: 107845.