مدل سازى وضعیت جزر و مدى به صورت جهانى براساس توابع متعامد و یکه در منطقه مطالعاتى با استفاده از مشاهدات 11 ساله ماهواره ارتفاع سنجى (TOPE×/POSEIDON)

نوع مقاله: مقاله پژوهشی

نویسنده

دانشجوى دکتراى مهندسى نقشه‏ بردارى (ژئودزى)

چکیده

هدف از این تحقیق مدل سازى پدیده جزر و مد به صورت جهانى براى تمام آب هاى آزاد دنیا مى ‏باشد. به منظور مدل سازى این پدیده از روش آنالیز هارمونیک استفاده شده است. جهت تشکیل مدل ارتفاع سطح لحظه ‏اى آب 9 مؤلفه اصلى جزر و مدى (Ssa,Mm,MfMO1,P1,K1,N2,M2,S2) را در محاسبات لحاظ کرده‏ ایم. به منظور تشکیل ضرایب کسینوسى و سینوسى مدل ریاضى از مجموعه توابع متعامد و یکه در منطقه مطالعاتى استفاده شده است. به منظور برآورد مجهولات از تمام داده‏ هاى خام و اصلى ماهواره ارتفاع سنجى (TOPE×/POSEIDON) استفاده نموده ‏ایم. اطلاعات جمع‏ آورى شده توسط این ماهواره در مدت 10 سال در قالب 117  CD از طرف سازمان فضایى امریکا براى ما ارسال شده است. دقت داده ‏هاى جمع آورى شده توسط ارتفاع سنج TOPE× و ارتفاع سنج POSEIDON بترتیب برابر با 2 cmو3cm گزارش شده است. به منظور تخمین صحت مدل هاى حاصل از محاسبات مدل سازى تست‏ هاى زیر صورت گرفته است .
1 - مقایسه نتایج حاصل از مدل ارتفاع سطح لحظه‏ اى آب با مشاهدات ماهواره در دوره ‏اى که در محاسبات مدل سازى شرکت نکرده است .
2- مقایسه مدل ارتفاع سطح متوسط آب با مدل هاى محاسبه شده توسط [R.H.Rapp,1994],[M.C.Kim,1998]
3 - مقایسه مدل دامنه مؤلفه ‏هاى عمده جزر و مدى O1,K1,M2,S2 با مقادیر محاسبه شده براى دامنه این مؤلفه ‏ها در موقعیت 215 ایستگاه جزر و مدى انتخاب شده در سراسر دنیا.
دقت متوسط مدل ارتفاع سطح لحظه‏ اى آب برابر با 1.677 mm برآورد شده است. میانگین اختلافها حاصل از مقایسه مدل ارتفاع سطح لحظه‏ اى آب با مشاهدات ماهواره در دوره ‏اى که در مدل سازى شرکت نکرده برابر با13.25cm محاسبه شده است. میانگین اختلافها بین مدل ارتفاع سطح متوسط آب با مدل [R.H.Rapp,1994] برابر با  13.01cmبدست آمده است. همچنین میانگین اختلافها حاصل از مقایسه مدل دامنه مؤلفه ‏هاى O1,K1,M2,S2 با مقادیر ارائه شده براى دامنه این مؤلفه ‏ها در ایستگاه­ هاى جزر و مدى به ترتیب برابر با  05.26cm,05.76cm,07.08cm,11.48cm  حاصل شده است .

عنوان مقاله [English]

Global Modeling of Tidal State Based on Orthogonal and Unit Functions in the Study Area Using 11-Year Observation of TOPE × / POSEIDON Altimeter Satellite

نویسنده [English]

  • Hasan Hashemi Farahani
Ph.D. Student of Surveying Engineering (Geodesy)
چکیده [English]

The purpose of this research is to model the tidal phenomenon globally for all free waters of the world. In order to model this phenomenon, harmonic analysis method has been used. For the formation of the model for elevation of instantaneous level of water, nine main tidal components (Ssa, Mm, Mf, MO1, P1, K1, N2, M2, S2) have been taken into account in calculations. In order to form the cosine and sine coefficients of the mathematical model, a series of orthogonal and unit functions have been used in the study area. We used all the raw and main data of the TOPE × / POSEIDON altimeter satellite to estimate the unknowns. The information gathered by this satellite has been sent to us by the US Space Agency in a period of 10 years in the format of 117 CDs. The accuracy of the data collected by the TOPE × and POSEIDON altimeter is reported to be 2 cm and 3 cm respectively. In order to estimate the accuracy of the models derived from modeling calculations, the following tests are performed.
1 - Comparison of the results of the instantaneous water level elevation model with satellite observations in a period that has not been considered in modeling calculations.
2. Comparison of the model of mean water elevation with the models calculated by R.H.Rapp, 1994, and M.C.Kim, 1998.
3 - Comparison of the model of domains of tide major components of O1, K1, M2, S2 with the calculated values for the domain of these components in the position of 215 tidal stations selected throughout the world.
The average accuracy of the instantaneous water level elevation is estimated to be 1.677 mm. The mean differences from comparison of the instantaneous water level elevation model with satellite observations in a period that did not participate in modeling is calculated to be 13.25 cm. The average difference between the model of mean water level and the model by R.H.Rapp, 1994, is 13.01 cm. Furthermore, the mean differences obtained from comparison of the model of domains of components O1, K1, M2, S2 with the values provided for the domains of these components in tidal stations were 05.26cm, 05.76cm, 07.08cm, 11.48cm, respectively.

1- Andersen O.B.(1994)Ocean tides in the northern North Atlantic Ocean from ERS-1 altimetry,Journal of Geophysical Research 99(C11),22557-22573.
2- Andersen O.B.(1995)Global ocean tides from ERS-1 and TOPE×/ POSEIDON altimetry,Journal of Geographical Research, 100(C12 (
3- Cartwright D.E.and Ray R.D.(1990)Oceanic tides from Geosat altimeyry, Journal of Geophysical Research, 95(C3)3069-3090.
4- Cartwright D.E.and Ray R.D.(1991)Energetics of global ocean tides from Geeosat altimetry ,Journal of Geophysical Research 96(C9)16897-16912.
5- Cartwright D.E.(1993)Theory of ocean tides with application to altimetry .In:Satellite altimetry in geodesy and oceanography, Lecture Notes in Earth Sciences,vol,50,R.Rummel and F.Sansomeditors.Springer Verlag, NewYork, pp.99-141.
6- Grafarend E.W.and Ardalan A.A.(1967b)World Geodetic Datum 2000 ,Journal of Geodesy,vol.73.
7- Heiskanen W.A.and Moritz H.(1967)physical Geodesy, W.H.Freeman, NewYork.
8- Hwang C.(1993)Spectral analysis using Orthonormal Functions with a case studt on the sea surface topography ,Geophys., Int.115:1148-1160.
9- Hwang C.(1995)Orthonormal function approach for Geosat Determination of Sea Surface Topography,Marine Geodesy., 18:245-271.
10- Knudsen P.(1994)Global low harmonic degree models of seasonal variability and residual ocean tides from TOPE×/POSEIDON altimeter data ,Journal of Geophysical Research, 99(C12),24643-24655.
11- Knudsen P.(1993a)Altimetry for geodesy and oceanography ,in Geodesy and Geophysics,Lecture Notes for the NKG Autumn School 1992 ,edited by J.Kakkuri, pp.87-129, Finnish Geodetic Institute,Helsinki.
12- Kreyszig E.(1978)Introductory Functional Analysis with applications. University of Windsor,John Wiley&Sons, NewYork,Chi Chester,Toronto.
13- Mainville A.(1987)The altimetry -gravimetry problem using orthonormal base functions ,Dep.Geod., Sci.,Surv., Report No.373,The Ohio State University, Columbus.
14- PO.DAAC,1993"PO.DAAC Merged Geophysical Data Record Users Handbook" JPL D-11--7.November 1996.
15- Rapp R.H.and pavlis,N.K.,(1990)The development and analysis of geopotential coefficient Models to spherical harmonic degree 360,Journal of Geophysical Research,95, 21889-21911.
16- Rapp R.H.and Wang T.M.and pavlis ,N.K.(1991)The Ohio State 1991 geopotential and Sea Surface topography harmonic Coefficient Models, Rep.410 Depatment of Geodetic Science and Surveying ,The Ohio State University, Columbus.
17- Rapp R.H.and Wang Y.M.and Pavlis N.K.,(1991)The Ohio State 1991 geopotential and Sea Surface topography harmonic Coefficient Models ,Rep.410, Department of Geodetic Science and Surveying,The Ohio State University, Columbus.
18- Smith A.J.E.(1997)Ocean tides from satellite altimetry, phD Thesis,Delft Institute for Earth-Oriented Space Research, Delft University of Technology, Delft, The Netherlands, 171pp.
19- The United Kingdom Hydrographic Office."Admiralty Tide Tables Volume 3" Indian ocean and South China Sea,2003.
20- Wahr J.W.(1985)Deformation of the Earth induced by polar motion,J. of Geophys. Res.(Solid Earth),90,9363-9368.