ارزیابی توانمندی مدل های AOGCM در شبیه سازی طول دوره های خشک با رویکرد بررسی عدم قطعیت و تغییر اقلیم در گستره ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری جغرافیای طبیعی و اقلیمشناسی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان (نویسنده مسئول)

2 دانشیار جغرافیای طبیعی و اقلیم شناسی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان

3 استاد جغرافیای طبیعی و اقلیم شناسی، دانشکده جغرافیا و برنامه ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان

4 استادیار مرکز علوم و تکنولوژی پیشرفته و علوم محیطی، کرمان

چکیده

شناسائی و استخراج طول دورههای خشک در نواحی خشک و نیمه خشک از اهمیت خاصی برخوردار است، بنابراین استفاده از مدلهای پیشیابی تغییرات اقلیمی برای بررسی رفتار پارامترهای اقلیمی در آینده امری اجتناب ناپذیر است. زیرا با شناخت رفتار زمانی- مکانی عناصر اقلیمی مانند بارش، قادر خواهیم بود شدت اثرات عوامل مخرب محیطی را کاهش دهیم.
در این پژوهش عملکردمدل گردش عمومی جو - اقیانوس(AOGCMs- AR4)در شبیه سازی طول دورههای خشک در گسترهایران مورد ارزیابی قرار گرفت. بدین منظور مقادیر ماهانه بارش 15 مدل AOGCMکه در نسخة 5مدلLARS-WG تعبیه شده تحت سناریوهای مختلف برای دهههای 2050 و 2080 بر روی 45 ایستگاه همدید واقع در گستره ایران زمین ریزمقیاس شدند. بعد از اعتبارسنجی و وزندهی به مدلها با شاخصهای آماری، مشخص شد که مدل Hadcm3 و GFDL-CM2.1 بهترین کارایی و عملکرد را در شبیهسازی طول دورههای خشک دارد. در مقابل خروجی مدلهای NCPCM وINM-CM3.0 کمترین همبستگی را با دادههای مشاهداتی دارا میباشند. مدلسازی دورههای خشک با محاسبة سناریوهای تغییر اقلیم و لحاظ نمودن منابع عدم قطعیتها در خروجی مدلهای (AOGCM)، نشان داد که بر اساس بدترین سناریو(A2)، و حدیترین وضعیت(2080)، میانگین دمای کشور 2/7 درجة سلسیوس افزایش و میانگین بارش با وجود افزایش نقطهای آن در برخی از ایستگاهها، با کاهش 33 درصدی در کل کشور روبرو است. در خوشبینانهترین سناریو(B1)، نیز میانگین دمای کشور 1/4 درجه سلسیوس نسبت به دورة مشاهداتی افزایش و میانگین بارش نیز با کاهش 14 درصدی همراه است.
نتایج حاصل از بررسی عدم قطعیت در بررسی دورههای خشک در ایران نشان داد که در هر دو دهة 2050 و 2080 و بر اساس هر سه سناریو(B1,A1B,A2)، طول دورههای خشک در تمامی پهنههای ایران افزایش مییابد. بیشترین درصد تغییرات طول دورههای خشک مربوط به پهنة شمالغرب (ارومیه، خوی، کرمانشاه، همدان و لرستان) است.

کلیدواژه‌ها


عنوان مقاله [English]

Validation of AOGCMs capabilities for simulation length of dry spells under the climate change and uncertainty in Iran

نویسندگان [English]

  • Seyyed Keramat Hashemi-Ana 1
  • Mahmud Khosravi 2
  • Taghi Tavousi 3
  • Hamid Nazaripour 4
1 Ph.D Student of Climatology,Department of physical geography & climatology, Faculty of geography and environmental planning,University of Sistan and Baluchestan, Zahedan-Iran
2 Associate Professor, Department of physical geography& climatology, Faculty of geography and environmental planning University of Sistan and Baluchestan, Zahedan-Iran
3 Professor ,Department of physical geography& climatology, Faculty of geography and environmental planning University of Sistan and Baluchestan, Zahedan-Iran
4 Assistant Professor, Research institute for science and high technology and environmental science- Kerman
چکیده [English]

Extended Abstract
 
Introduction
Precipitation is one of the vital climatic parameters that plays a major role in human life. Therefore, the impact of Precipitation in occurrence or non-occurrence of droughts and dry spells have been very effective. Identification and extraction length of dry spells in arid and semi-arid regions are very important. According to the most recent climate classification that has been done, about 90 percent of the areas of Iran are located in arid and semi-arid climate, and more than 40 percent are facing a severe water crisis. Therefore, understanding the behavioral mechanisms of dry spells have a great significance in arid and semi-arid areas like Iran, especially with the pose of the phenomenon of climate change that caused the worsening dryness and desertification in some of the regions. Many researches simulated dry spells with climate change approach and use of the output of AOGCM models. Researches in this category are in less numbers, but the most recent research has been done by the authors (hashmy titles et al., 2015), investigating and modeling the length of dry spells in the Southwestern area of Iran. The aim of this research is to examine the Validation of AOGCMs Capabilities for Simulation Length of Dry Spells under the Climate Change and Uncertainty in Iran
 
Materials & Methods
According to the aim of this research, we used two databases in this study. The first database involves collecting and analyzing all data base information (minimum temperature, maximum temperature, rainfall and sunshine) on a daily scale in 234 synoptic stations (with different statistical period). But the format for the data station and point during the period of statistical modeling was needed for more than 30 years, which has a large statistical defects were excluded, and finally 45 synoptic stations that have favorable conditions (the maximum area coverage and continuous and reliabledata) were selected for the final processing of the first data base. The period of 1981-2010 was used as the base period.The second database contains data provided by version 5 models (LARS-WG) and on emission scenarios (B1, A1B, A2) from AOGCM models for the 2050s to be downscaled. In fact, this data is the first data base (minimum temperature, maximum, precipitation and sunshine) prepared based on the format models for analysis and predicting climate change, after downscaling it.
Because this research was based on study and extraction length of dry spells in the range of long-term with the approach to climate change, so the methodology is based on several stages. At first, verification (validation) of LARS-WG, to ensure efficiency in the process model simulation will be discussed. Then the performance and capabilities of 15 AOGCM models in the new version of Lars-wg will be assessed. At the end, the precipitation threshold is defined and extraction of the longest length of dry spells and comparing it with the maximum length of the dry spells will be simulated.
 
Results & Discussion
After calibrating the model of statistical properties (comparison tests T, F and P values (decision criteria), all stations were used to confirm the validity of the model. The results of this calibration indicate that in more than 96% of the stations, for the minimum and maximum temperature and sunshine model, show high accuracy (results of error in Dezful and Gorgan stations were greater). In all of these stations like Abadan station, variables significant (P-value) were at./05. It is acceptable that the data generated is random.Considering the bias error, at more than 95 percent of stations there were very good agreements between the observed and modeling data (for every 4 variables).
Based on the principles of (1 to 3), and using statistical methods and indicators, the AOGCM models to simulate and extract during dry spells were examined and it was found that two models (Hadcm3 and GFDL-CM2.1) had maximum performance (correlation) and the lowest error in estimating for simulation data precipitation. The model (INM-CM3 and NCPCM) have least amount of correlation and efficiency.
To estimate the maximum length of dry spells Hadcm3 results were used under scenario (A2 and B1) for the decade 2050 and the use of the results of other models was skipped in this research.
Maximum dry spells in Iran comply with dryness condition in central and eastern areas. So that the country could be on the threshold of ./1 mm divided into 6 orbital regions of the northern circuit during the period of 37 days (in Rasht station) minimum and 351-day observation period in Southeastern Chabahar stations. The values show that the threshold of ./1 mm at more than 65 percent of the area’s dry spells over 7 months there was no rain on them yet. With a threshold of 5 mm needs maximum length of dry spells that lasted about a year with 364 days in Yazd station. That is roughly the size of 5 mm precipitation a year not registered at this station.
 
Conclusion
Modeling dry spells by computing scenarios of climate change and taking into consideration uncertain resources at the AOGCM models output, showed that based on the worst-case scenario (A2), and the most critical situation (2080), the average temperature of the country has increased 2.7 degrees (ºC) and Despite increased precipitation in some Stations, the average rainfall is facing a 33% reduction in the whole country.  According to the most optimistic scenario (B1), the average temperature of the country is increasing by 1.4 (ºC) and the precipitation is decreasing by 14% in relation to the observation period. The results of the uncertainty examination for dry spells in Iran showed that in both 2050s and 2080s and based on all three scenarios (B1, A1B, A2), length of dry spells increases in all areas of Iran. Most of the changes in length of dry spells belong to the northwestern areas of Iran (Urmia, Khoy, Kermanshah, Hamedan and Lorestan).

کلیدواژه‌ها [English]

  • Climate change
  • Dry Spells
  • Validation of AOGCMs
  • Uncertainty
  • Iran
1. حجازی زاده، شیرخانی؛ زهرا، علیرضا (1382)، تحلیل و پیشبینی آماری خشکسالی و دوره های خشک کوتاه مدت در استان خراسان، پژوهش های جغرافیایی، جلد 1، شماره 37،صص 25-38.
2. خسروشاهی، کالیراد، حسینی مرندی؛ محمد، عهدیه، حمید (1390)، مقایسة قلمرو بیابان های اقلیم شناسی و زمین ساختی ایران، فصلنامه مرتع و بیابان ایران، جلد 18، ش2، صص 352-336.
3- طاوسی، تقی(1394)، بیابان و بیابانزایی از نگاه آب و هواشناسی، دانشگاه سیستان و بلوچستان با همکاری نشر مرندیز.
4. مسعودیان، سید ابوالفضل(1390)، آب و هوای ایران، انتشارات شریعه توس مشهد، چاپ اول.
5. مشکانی، محمد رضا (1363)، بررسی احتمال تواتر روزهای خشک بابلسر از دیدگاه بیز تجربی، مجلة علوم آب، شماره 3، صص 26-18.
6. هاشمی، فریدون (1347)، تجزیه و تحلیل استاتیکی از بارندگی سالانه، ماهانه و روزانه تهران، تحقیقات علمی هواشناسی کل کشور، صص 120-1.
‏7. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof JP, Schöll R, Semmler T, Woth K (2007). Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(S1):71–95.
8. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof JP, Schöll R, Semmler T, Woth K (2007). Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81(S1):71– 95.
9. Blenkinsop S, Fowler HJ (2007). Changes in European drought characteristics projected by the PRUDENCE regional climate models. Int J Climatol 27:1595–1610.
10. Boulanger J-P, Martinez F, Segura EC (2006). Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: temperature mean state and seasonal cycle in South America. Clim Dyn 27:233–259. doi:10.1007/s00382-006-0134-8
11. Boulanger J-P, Martinez F, Segura EC (2007). Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim Dyn 28:255–271. doi:10.1007/s00382-006-0182-0
12. Christensen JH, Christensen OB (2007). A summary of the PRUDENCE model projections of changes in European climate during this century. Clim Change 81(S1):7–30
13. Dastidar AG, Ghosh D, Dasgupta S, De UK (2010). Higher order Markov chain models for monsoon rainfallover West Bengal, India. Indian J Radio and Space Phys 39:39–44
14. Domroes, M and Ranatung, E., (1993). A Statistical approach toward a regionalizationof daily rainfall in Sri Lanka. Int. J. Climatol., 43.
15. Fen Ouyang • Haishen Lu¨ • Yonghua Zhu • Jianyun Zhang • Zhongbo Yu • Xi Chen(2013). Uncertainty analysis of downscaling methods in assessing the influence of climate change on hydrology. Stoch Environ Res Risk Assess DOI 10.1007/s00477-013-0796-9.
16. Gao X, Giorgi F (2008). Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Change 62:195–209
17. Gao X, Pal JS, Giorgi F (2006). Projected changes in mean and extreme precipitation over theMediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett33(L03706). doi:10.1029/2005GL024954
18. Grimm A, Natori A (2006). Climate change and interannual variability of precipitation in South America. Geophys Res Lett 33:L19706. doi:10.1029/2006GL02682
19.Hashemi-Ana, S. K., Khosravi, M., & Tavousi, T. (2015). Validation of AOGCMs Capabilities for Simulation Length of Dry Spells under the Climate Change in Southwestern Area of Iran. Open Journal of Air Pollution, 4(02), 76.‏
20. Intergovernmental Panel on Climate Change, (IPCC), Climate Change (2007). Synthesis Report of the Forth Assessment Report, IPCC,2007.
21. IPCC. 1995. Climate changes 1995: Contribution of Working Group I to the second Report of the Intergovernmental Panel on climate Change, 141–193.
22. IPCC. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press: Cambridge.
23. Jones, P. D., & Hulme, M. (1996). Calculating regional climatic time series for temperature and precipitation: methods and illustrations. International journal of climatology, 16(4), 361-377.
24. Karmalkar, Ambarish V., Raymond S. Bradley, and Henry F. Diaz(2011). “Climate change in Central America and Mexico: regional climate model validation and climate change projections.” Climate Dynamics 37.3-4: 605-629.
25. Khan, M. S., Coulibaly, P., & Dibike, Y. (2006). Uncertainty analysis of statistical downscaling methods using Canadian Global Climate Model predictors. Hydrological processes, 20(14), 3085-3104.
26. Kharin, V. V., and F. W. Zwiers, (2000): Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J. Climate, 13, 3760–3788.
27. Li W, Fu R, Dickinson RE (2006). Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled modelsfor the IPCC AR4. J Geophys Res 111:D02111. doi:10.1029/2005JD006355
28. Marengo, J. A., Ambrizzi, T., Da Rocha, R. P., Alves, L. M., Cuadra, S. V., Valverde, M. C., & Ferraz, S. E. (2010). Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Climate Dynamics, 35(6), 1073-1097.
29. Martin vide, J., Gomez, L. (1998). Regionalization of peninsular Spain based on the length of dry spells Int. J. Climatol. 19,537-555.
30. Martin-Vide, J. and Gomez, L. (1999). Regionalization of Peninsular Spain based onthe length of dry spells. International Journal of Climatology, Volume 19, Issue 5,pages 537-555.
31. Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 Multimodel data set: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383
32. Racsko P, Szeidl L, Semenov M (1991). A serial approach to local stochastic weather models. Ecol Model 57 (1–2):27–41
33. Rowell DP (2006). A demonstration of the uncertainty in projections of UK climate change resultingfrom regional model formulation. Clim Change 79:243–257
34. Sánchez, E., Domínguez, M., Romera, R., de la Franca, N. L., Gaertner, M. A., Gallardo, C., & Castro, M. (2011). Regional modeling of dry spells over the Iberian Peninsula for present climate and climate change conditions. Climatic change, 107(3-4), 625-634.
35. Schmidli J, Frei C (2005). Trends of heavy precipitation and wet and dry spells in Switzerland duringthe 20th century. Int J Climatol 25:753–771
36.Schoof JT, Pryor SC (2008). On the proper order of Markov chain model for daily precipitation occurrence in the contiguous United States. J Appl Meteorol Climatol 47:2477–2486
37. Semenov MA, Brooks RJ (1999). Spatial interpolation of the LARS-WG stochastic weather generator in GreatBritain. Clim Res 11(2):137–148
38. Semenov, V. A., and L. Bengtsson, 2002: Secular trends in daily precipitation characteristics: Greenhouse gas simulation with a coupled AOGCM. Climate Dyn., 19,
39. Vera C, Silvestri G, Liebmann B, Gonza´lez P (2006). Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi: 10.1029/2006GL025759
40. Voss, R., W. May, and E. Roeckner, (2002): Enhanced resolution modelling study on anthropogenic climate change: Changes in extremes of the hydrological cycle. Int. J. Climatol., 22, 755–777.
41. Voss, R., W. May, and E. Roeckner, (2002): Enhanced resolution modelling study on anthropogenic climate change: Changes in extremes of the hydrological cycle. Int. J. Climatol., 22, 755–777.
42. Wehner, M. F., (2004): Predicted twenty-first-century changes in seasonal extreme precipitation events in the Parallel Climate Model. J. Climate, 17, 4281–4290.
43.Wilby, R. L., and T. M. L. Wigley, (2002): Future changes in the distribution of daily precipitation totals across North America. Geophys. Res. Lett., 29, 1135, doi:10.1029/ 2001GL013048.
44. Soler C.M.T. Sentelhas P.C. and Hoogenboom G.(2007). Application of the CSM-CERES-Maizemodel for planting date evaluation and yieldforecasting for maize grown off-season in asubtropical environment. European JournalAgronomy, 27: 165-177.