پهنه بندی استعداد وقوع زمین لغزش در منطقه رودبار به روش LNSF

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مکانیک خاک و پی دانشگاه گیلان-گروه عمران

2 دکتری فیزیک و حفاظت خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان - گروه علوم خاک

3 دانشیار دانشگاه گیلان- دانشکده فنی-گروه عمران

10.22131/sepehr.2020.38605

چکیده

کشور ایران با توجه به توپوگرافی عمدتاً کوهستانی، شرایط جغرافیایی و سازندهای متنوع زمینشناختی، فعالیتهای نئوتکتونیکی و لرزهخیزی، شرایط مساعدی را برای وقوع پدیده زمین لغزش، به طور بالقوه داراست. در نظر گرفتن خصوصیات ژئوتکنیکی خاک می­‌تواند در ارزیابی بهتر خطر احتمال وقوع زمین لغزش نقش مؤثری داشته باشد. این پدیده هر ساله به خسارتهای مالی و جانی، تخریب راهها، خطوط لوله، خطوط انتقال نیرو، تأسیسات معدنی، تونلها، نقاط مسکونی شهری و روستایی و منابع طبیعی در کشور منجر میشود. یکی از روش های آماری برای تجزیه و تحلیل داده ‏ها استفاده از روش اصلاح شده LNRF موسوم به روشLNSF  است. روشLNSF بادر نظر گرفتن چهار کرانه برای مقادیر لایه وزنی LSI، منطقه را به پنج پهنه استعداد وقوع زمین لغزش تقسیم می کند. در پژوهش حاضر با استفاده از این روش ابتدا مساحت وسیعی از منطقه مورد مطالعه (حدوداً 12800 هکتار) جهت ارزیابی استعداد زمین لغزش پهنهبندی شد و سپس با در نظر گرفتن خصوصیات ژئوتکنیکی منطقه و با تمرکز بر بحرانی‏ ترین پهنه (استعداد زمین لغزش خیلی زیاد) عوامل و شرایط وقوع و راهکارهای جلوگیری از وقوع زمین لغزش بررسی شد. در مرحله وزندهی، بالاترین وزن به دسته هفتم از لایه کاربری اراضی اختصاص داشته که همین دسته در پهنه­بندی نهایی تقریباً تمامی پهنه استعداد زمین ­لغزش خیلی زیاد را در مقایسه با سایه دسته‏ ها پوشش داده است. نتایج حاکی از آن بود که حدود نیمی از خاک پهنه با خطر زمین لغزش خیلی زیاد، از نوع CL (رس با خاصیت خمیری کم) است، همچنین با تعیین ضریب اطمینان استاتیکی در پهنه مورد اشاره مشخص شد که در صورت رسیدن خاک به درجه اشباع می توان انتظار ناپایداری دامنه ها در بخش وسیعی از منطقه مورد مطالعه را داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Geotechnical zoning of landslides likelihood in Rudbar using GIS and LNSF method

نویسندگان [English]

  • Reza Aminataei 1
  • Sahar Akhavan 2
  • Amirhooshang Nezamivand chegini 3
1 M.Sc, Geotechnical engineering department of civil engineering University of Guilan, Rasht, Iran
2 Ph.D.Soil Physics and conservation, department of soil sciences Gorgan University of Agricultural sciences and natural resources, Gorgan, Iran
3 Associate professor, department of civil engineering University of Guilan, Rash, Iran
چکیده [English]

Extended Abstract
Introduction
Due to mainly mountanous topography, specific geographical conditions, various geological formations, neo tectonical activities, and seismicity, Iran is potantially prone to landslides.Gilan and Roudbar region in the southern part of this province are among areas potentially susceptibleof landslides, rock falls, and other events associated with seismichillsides. Landslide results in severe erosions and sometimes leads to financial losses or loss of lives. Therefore, it is important to investigate the causes behind this phenomenon and determinezones prone to land sliding. 
 Materials and methods
In this study, we tried to usea sample of trenches and boundaries offaultslocated inRoudbar sliding slopes in order to characterize the sliding soils. Following this field investigatation,soil samples were obtained from 10 landslide zones.  Then, factors affecting the sliding slopes were identified and a digital map was produced for each factor. Nine data layers including direction and degree of slopes, geology, landuse, precipitation, relative changes in elevation, distance from roads, rivers and faults were used in GIS environment to prepare the weighted maps.  Afterwards, LNSF statistical method was used for data analysis in GIS environment and the study area was divided into 5 zones with very low (1), low (2), moderate (3), high (4), and very high (5) sliding susceptibility.  Following the integration and analysis of layers using LNSF model, 26 zonation mapswere calculated, and the best map was selected using success rate curves.  Then, the zone with highest potentiality for landslide occurrence was selected for further studies from the five zones mentioned before.  Hydrometry, Atterberg limits and direct shear tests were performedin the Soil Mechanics Laboratory of Gilan University with the aim of identifying physical and mechanical properties of soil samples.
 Results and discussion
Results indicate that with LNSF method, it is possible tozone a vast area (12814.2 hectaresin this research) based on landslide potentiality and then focus on the most critical area (very high landslide potentiality) toinvestigate factors and conditions resulting in the occurrence of landslides or prevention strategies. Success rate charts helps us to determine the most optimal landslide zoning map (i.e. a map inwhich the highest percentage of landslide pixels occur in the “very high potentiality” zone). Following the selection of final zonebased on success rate graphs, from the 26 zoning maps, it was concluded that the ​​landslide zone with very high potentiality encompasses 282.6825 hectares or 2.2% of the total area under study.At the weighting stage, the highest weight was allocated to the seventh category of the land use layer, which at the final zoning stage covers nearly the whole area with very high potantiality of landslides. Therefore, there is a direct relation between the allocated weight in the subject categories and the percentage of its occupancy level in the final zoning.Zoning the results of granulation experiments by Thiessen Polygon, it was concluded that CL type soil coversnearly half of the area with very high landslide potentiality. Determining the static reliability coefficient of the area with very high ​​landslide potentiality, we found that in case soil reaches saturation, unstability of hillsidesin a large part of the study areacanbe expected.
 Conclusion
Dispersion of landslides in Iran is mainly concentrated in Southern Gilan Province. Based on the investigation of the situations in the study area,geology, landuse, distance from highway are identified as the most affective factors in theoccurance of landslides.Following the weighting stage with LNSF method, rated layers were prepared in GIS enviornment, final overlapping was performed, and landslide zoning map of the study area was produced. Based on the landslide risk zonning map, the study area was divided into 5 subsections: 2.21% of the study area had very high sensetivity, 26.43% high sensetivity, 42.28% avarage sensetivity, 25.25% low sensetivity, and 3.83% very low sensetivity. Considering the zonning map produced, it properly overlaps with identified landslides in the area, and help governmental policy makings. It specifically helps Organization of Roads in construction of new roads. 

کلیدواژه‌ها [English]

  • landslide
  • Zoning
  • Geotechnical properties
  • GIS
  • LNSF
1- افجه‏ ای نصرآبادی, ح . 1385. پهنه‌بندی خطر و بررسی عوامل مؤثر زمین لغزش در سری دو جنگل شصت کلاته. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

2- اکرامی راد، ع.، اسلامی، ا. و رازقی، ج. 1389. زمین لغزش بزرگ دشتگان رودبار (مسیر آزادراه رشت-قزوین) بررسی علل و چگونگی پایدارسازی آن. دوره 28، شماره 1، ص 119-127.

3- اکرامی راد، ع و حیدرپور، ب. 1390. بررسی علل وقوع زمین لغزش بزرگ در منطقه‌ی دشتگان رودبار». اولین همایش منطقه ای مهندسی عمران. ص 121-125.

4- بهنیا ، ک.، و اعرابی، ن. 1391. آزمایش‌های مکانیک خاک (بر اساس ASTM 2012). انتشارات نگارنده دانش.

5- رضایی، ف. مرتضوی، م. 1389. مطالعه لغزش دشتگان و تحلیل خطر آن بر روی بزرگراه قزوین- رشت. مجله علوم پایه دانشگاه آزاد اسلامی» سال 20 ، شماره 77 .

6- معماریان، ح. 1374. زمین‌شناسی مهندسی و ژئوتکنیک، تهران: انتشارات دانشگاه تهران.

7- یمانی، م. محمدی، ا. 1389. پهنه بندی زمین لغزش در حوضه ی آبخیز توتکابن با استفاده از مدل‌های کمی.  مجله جغرافیا و توسعه، شماره 19. ص 98-83.

8.   Afjayi Nasrabadi, h. 2006. “Danger zoning and investigating the factors affecting landslide in the Shast Calteh Forest Series.” Gorgan University of Agricultural Sciences and Natural Resources.

9.   Behnia, K. and Arabi, N. 2012. Soil Mechanics Experiments (according to ASTM .Publishing House of Knowledge.

10. Bonham-Carter,G. 1994. Geographic Information Systems for Geoscientists: Modelling with GIS: Pergamon.

11. Ekrami Rad, A, Islami, A. and Razaghi, C. 2010. Large landslide of Rashtgan Rudbar (Route of Freeway of Rasht-Qazvin). Study of the causes and how to stabilize it.  Volume 28, Issue 1, pp. 119-127.

12. Ekrami Rad, A. and Heidarpur, B. 2011. Investigation of the causes of large landslide occurrence in Dashtgan Roudbar area. First Regional Civil Engineering Conference. P. 121-125.

13. Gupta RP, Joshi BC. 2011. Landslide hazard zonation using the GIS approach – a case study from the Ramganga Catchment,Himalayas. Eng Geol 28:119–131.

14. Kayastha, M. Dhital, and F. De Smedt. 2013. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, vol. 52, pp. 398-408.

15. Lan, H., C. Zhou, L. Wang, H. Zhang, and R. Li. 2004. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China,” Engineering geology, vol. 76, no. 1, pp. 109-128.

16. M. Adhikari, 2011.  Bivariate Statistical Analysis of Landslide Susceptibility in Western Nepal.

17. Memarian, h. 1995. Geology of Engineering and Geotechnics, Tehran: Tehran University Press.

18. Pradhan,B., S. Lee, and M. F. Buchroithner. 2010. A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems, vol. 34, no. 3, pp. 216-235.

19. Rezaei, F Mortazavi, M. .2010. Study of slipping the dashtegan and its risk analysis on the Qazvin-Rasht highway.” Journal of Basic Sciences, Islamic Azad University, 2010, No. 20.

20. Saha, Ashis K., et al. 2005. An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas.” Landslides 2.1: 61-69.

21. Tay, L., and H. Lateh, 2013. Landslide Hazard Mapping Using Probabilistic Approaches: A Case Study of Penang Island, Malaysia,” Caspian Journal of Applied Sciences Research, vol. 2, pp. 140-144.

22. Yamani, m. Mohammadi, A. 2010. Landslide zonation in the Tubakab watershed using quantitative models”. Journal of Geography and Development, No. 19. P. 98-83.