کمّی سازی عوامل محیطی و انسانی در وقوع آتش سوزی جنگل با روش های RS و GIS؛ مناطق حفاظت شده ارسباران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه نقشه برداری دانشکدۀ فنی و مهندسی مرند، دانشگاه تبریز، تبریز- ایران

2 دانشجوی کارشناسی ارشد GIS، دانشکده مهندسی دانشگاه آزاد اسلامی، ممقان - ایران

10.22131/sepehr.2020.38606

چکیده

در این تحقیق، کمّیسازی عوامل محیطی و انسانی در وقوع و گسترش آتشسوزی جنگل در منطقه جنگلی حفاظت شده ارسباران، مورد بررسی قرار گرفته است. برای این منظور با ترکیب دادههای سنجش از دور و سیستم اطلاعات جغرافیایی، از باندهای انعکاسی و حرارتی تصاویر ماهوارهای لندست 8، مدل رقومی ارتفاعی زمین، سرعت و جهت باد، پوشش گیاهی، دمای سطح زمین، شیب، جهت شیب، نزدیکی به جادهها و مناطق مسکونی به عنوان عوامل طبیعی و انسانی استفاده شده است. ابتدا با تلفیق این دادهها، نقشه منـاطق خطر آتشسوزی جنگل تولید گردید و سپس نقشه مناطق با ریسک 50 درصدی آتشسوزی تولید شد. برای بررسی و اعتبار سنجی نتایج حاصل، دادههای مرجع آتشسوزیهای پیشین مورد استفاده قرار گرفت.  نتایج کمّی پارامترهای مذکور نشان دادند که پوشش گیاهی با 58/36 درصد همبستگی، شیب با مقدار 38/38 درصد دارای بالاترین تأثیر و سایر پارامترها در مراتب بعدی در انتشار آتشسوزی قرار دارند. همچنین نتایج مقادیر ضرایب همبستگی نرمال شده این پارامترها نشان داد که به ترتیب شاخصهای پوشش گیاهی، دمای سطح زمین، جهت شیب و شیب با 29/20%، 29/11%، 21/93% و 19/75بالاترین میزان همبستگی با نقشه خطر وقوع آتشسوزی را دارند. همچنین، نتایج ارزیابی نقشه پتانسیل آتشسوزی با ریسک 50 درصدی نشان داد که حدود 17% منطقه دارای پتانسیل خیلیزیاد بوده و بیشتر از 50 درصد منطقه در وضعیت خطر زیاد برای آتشسوزی قرار دارد. علاوه بر عوامل محیطی، بررسی ارتباط عوامل انسانی با خطر آتشسوزی نشان داد که عامل نزدیکی به جاده بیشترین سهم را در ایجاد وقوع آتشسوزی در منطقه دارد. نتایج کمّی عوامل انسانی در وقوع خطر آتشسوزی نشان داد که راههای ارتباطی و مناطق مسکونی به ترتیب حداقل 32 درصد و حداکثر 68 درصد همپوشانی با خطر وقوع آتشسوزی در منطقه مطالعاتی را دارا هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Quantifying environmental and human factors affecting occurance and spread of wildfires using RS and GIS methods protected area of Arasbaran

نویسندگان [English]

  • Hassan Emami 1
  • Hassan Shahriyari 2
1 Assistant professor, Marand engineering faculty, University of Tabriz, Tabriz, Iran
2 M.S. Student, Faculty of Engineering, Islamic Azad University, Mamaghan Branch, Iran,
چکیده [English]

Extended Abstract
Introduction
Forests play numerous critical roles in nature. They stabilize and fertilize soil, purify water and air, store carbon, and nurture environments abundant in biodiversity. Moreover, forests offer numerous job opportunities and hidden wealth toany economy. Unfortunately, wildfires have turned into a serious natural risk nowadays. Wildfires are a natural disaster threatening forests and ecosystem, from local to global level. Evaluating the risk of wildfires is an important factor in fire management. This can be performed at different spatial and temporal scales: global and local; short term, and long-term. At global scales, it can contribute to the establishment of general guidelines for fire management at continental level, while at local scales,it is more suitable for resources focusing on preventing specific fires in small regions. Long-term estimation addresses general, more permanent planning of firefighting resources, which is related to the more structural factors affectingwildfires or their spread, such as topography or terrain characteristics, vegetation structure, human activities or weather patterns.
 
Materials & Methods
Wildfire risk has become a major concern in recent years, particularly in areas where human settlements are in close proximity to forests. Wildfire origin canbe determined largely by environmental factors. However, fire related data is either unavailable, or mostly incomplete. Thus, reaching an overall annual estimate of wildfires is difficult. Some common methods are used toestimate the risk ofwildfires, including qualitative methods, quantitative methods based on specialized knowledge (multi-criteria evaluation techniques), regression techniques (linear regression and logical regression), and artificial neural networks. Wildfire initiation and spread depend on several important factors, including precipitation, presence of ignition elements, factors like topography, temperature, thunder, spreading of fuel, relative humidity, wind speed, and etc. The present study integrates data produced by remote sensing with data received from geographic information system. It also takes advantage of LDCM satellite imagery, and digital elevation model, along with natural/human factors such as wind speed and direction, vegetation, land surface temperature, slope, proximity to roads and residential areas. The present study seeks to quantify environmental and human elements effective in occurrence and spread of wildfires in the protected jungles of Arasbaran. To this end, a risk zone map was produced for the area, along with a map for areas with 50% risk. In the present study, the final map of risk zone was produced using the Fire Risk Index (FRI) and spatial statistics method.
 
Results & Discussion
In the present study, factors such as land cover type, slope, distance from residential area, distance from the road, and elevation were taken into account. During the process, different indices were assigned to each class of these factorsbased on their sensitivity to fire or their flammability. Land cover was one of the most important factors affecting the occurrence of wildfires. Slope was another important factor with a significant influence on the spread of fire. This natural factor affects fire spread and fire intensity. Proximity of human settlements to jungles is another important factor which sometimes threatsjungles. Therefore, forests in proximity of human settlements face a higher risk of wildfires. Elevation is another important topographical factorclosely related to wind behaviour, with a significant role in fire spreading. In Arasbaran forest, northern, eastern, and north-easternareas are more elevatedand thus, more prone to wildfires. In this study, a combination of environmental and human factors was applied to produce fire hazard maps along with a map for areas with 50% risk of wildfire.
 
Conclusion
Occurrence and spread of wildfires depends on many factors, some of which are more important and play a more significant role in these fires. A risk zone map was produced for wildfiresusing an integrated method consisting ofremote sensing and GIS methods. Risk zone was divided into 5 areas, i.e. very low, low, average, high, very high.Results indicate that the methodology presented based on a combination of RS and GIS techniquesin this study, is a reliable approach and tool for the prevention and mitigation of forest fires. They are also useful for all active institutes working in crisis management and emergency services, while helping jungle protectingorganizations to prevent fires or manage them. In addition, quantitative results indicate that vegetation index with a correlation of 58.36%, and slope with a correlation of 38.38 are the most affective factors, and other parameters are in the next ranks.Moreover, land cover, land surface temperature, direction, and slope with 29.20%, 29.11%, 21.93% and 19.75% normalized correlation coefficient respectively, have the highest correlation with the map of fire risk zone. In addition, results of evaluating 50% risk zone map indicate that around 17% of the study area have a high fire risk and more than 50% of the area is located in a high fire risk zone. In addition to environmental elements, results indicate that proximity to the road was the most affective factor in the occurrence of fire. Quantitative results showed that roads and residential areas were at least 32% and at most 68% correlated with fire risk in the study area.

کلیدواژه‌ها [English]

  • Environmental and human factors
  • Forest fire
  • Arasbaran region
  • Remote Sensing
  • GIS
1- احمدآبادی، ع.، فتح نیا، ا.، و رجایی، س.، (2017). برآورد تغییرات جنگل براساس عوامل اقلیمی با استفاده ازتصاویر ماهواره ای. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر»، 26(102)، 127-137. doi:10.22131/sepehr.2017.27462.

2- بانج شفیعی عباس، ا. ن. م.، جلالی سیدغلامعلی، عزیزی پیروز، حسینی سیدمحسن. (1386). تأثیر آتش ‌سوزی بر ساختار جنگل، مطالعه مورد‌ی، سری چلیر خیرود‌کنار (حوزه 45 گلبند‌ نوشهر). پژوهش و سازندگی، 76(3)، 105-112.

3- حسینی، س. س.، عبادی، ح.، و مقصودی مهرانی، ی. (2017). بهبود تخمین ارتفاع جنگل به کمک بهینه سازی ماتریس پراکنش به روش تغییر پایه پلاریزاسیون مطالعه موردی: جنگل‌های شمالی سوئد. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر»، 26(101)، 33-44. doi:10.22131/sepehr.2017.25724.

4- رضاپور اندبیلی، ن.، و علیخواه اصل، م. (2017). ارزیابی توان اکولوژیکی منطقه حفاظت شده آق داغ برای کاربری جنگلداری. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر»، 26(102)، 205-216. doi:10.22131/sepehr.2017.27478.

5- زرع کار، آ.، کاظمی زمانی، ب.، قربانی، س.، عاشق معلا، م.، و جعفری، ح. (2013). تهیه نقشه پراکندگی فضایی خطر آتش سوزی جنگل با استفاده از روش تصمیم‌گیری چندمعیاره و سامانه اطلاعات جغرافیایی (مطالعه موردی: سه حوزه جنگلی در استان گیلان) %J تحقیقات جنگل و صنوبر ایران. 21(2)، 218-230. doi:10.22092/ijfpr.2013.3854.

6- قائمی راد، ط.، و کریمی، م. (2015). ارزیابی و مقایسه ی نتایج حاصل از بهینه سازی مدل گسترش آتش سوزی جنگلی بر مبنای اتوماتای سلولی با استفاده از دو الگوریتم PSO و ABC. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر»، 24(93)، 65-76. doi:10.22131/sepehr.2015.14008.

7-گزمه، ح. (1391). مدل‌سازی گسترش آتش‌سوزی جنگل با استفاده از اتوماسیون سلولی (پایان نامه جهت اخذ درجه کارشناسی ارشد در رشته‌ی سیستم اطلاعات جغرافیایی)، دانشگاه صنعتی خواجه نصیرالدین طوسی.

8- گلوانی، ف.، & لشکری، ح. (2011). تحلیل و پیش‌پینی نقش باد فون بر آتش سوزی جنگل‌های استان گیلان. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی «سپهر»، 20(79)، 31-36.

9-  محمدی، ف.، شعبانیان، ن.، پورهاشمی، ه.، و فاتحی، پ. (2010). تهیه‌ نقشه‌ خطر آتش‌سوزی جنگل با استفاده از GIS و AHP در بخشی از جنگل‌های پاوه. تحقیقات جنگل و صنوبر ایران، 18(4)، 586-569.

10-منصوری نبی اله، ن. ر.، نصیری پروین، قراگوزلو علیرضا. (1390). تدوین برنامه مدیریت بحران آتش سوزی جنگل با تکنولوژی GIS&RS. کاربرد سنجش از دور و سیستم اطلاعات جغرافیایی در برنامه ریزی، 3(2)، 63-73

11. Adab, H., Kanniah, K. D., & Solaimani, K. J. N. h. (2013). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. 65(3), 1723-1743.

12. Alijanpour, A. (2014). Effect of physiographical factors on qualitative and quantitative characteristics of Rhus coriaria L. natural stands in Arasbaran region (Horand Township). Iranian Journal of Forest, 5(4), 431-442.

13. Brun, C., Margalef, T., & Cortés, A. (2013). Coupling Diagnostic and Prognostic Models to a Dynamic Data Driven Forest Fire Spread Prediction System. Procedia Computer Science, 18, 1851-1860. doi:https://doi.org/10.1016/j.procs.2013.05.354.

14. Cencerrado, A., Rodriguez, R., Cortes, A., & Margalef, T. (2012). Urgencu versus accurancy:Dynamic Data Driven application system for natural hazard management. International Journal of Numerical Analysis & Modeling9(2), 432-448. .

15. Chang, Y., Zhu, Z., Bu, R., Chen, H., Feng, Y., Li, Y., . . . Wang, Z. (2013). Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28(10), 1989-2004.

16. Coburn, A., Spence, R., & Pomonis, A. (1994). Guide to vulnerability and risk assessment. Disaster Management Training Programme.

17. Dargahi, F. A. K. S. D. (2001). THE STUDY OF NATURAL REGENERATION STRUCTURE IN ARASBARAN FOREST (SOTANCHI REGTON). Iranian journal of Forests and Poplar Research, 6(1), 1-62. doi:10.22092/ijfpr.2001.109706.

18. Dong, X., Li-min, D., Guo-fan, S., Lei, T., & Hui, W. (2005). Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of forestry research, 16(3), 169-174.

19.  Glasa, J., & Halada, L. (2008). On elliptical model for forest fire spread modeling and simulation. 78(1), 76-88.

20.  Gouma, V., & Chronopoulou, S. (1998). Wildland fire danger zoning–a methodology. 8(1), 37-43.

21.  liadis, L. S. (2005). A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environmental Modelling & Software, 20(5), 613-621.

22. Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4(1), 1-10. doi:10.1016/s0303-2434(02)00006.

23. Keane, R. E., Burgan, R., & Wagtendonk, v. (2001). Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. 10(4), 301-319.

24.  Li, Z., Nadon, S., & Cihlar, J. (2000). Satellite-based detection of Canadian boreal forest fires: Development and application of the algorithm. International Journal of Remote Sensing, 21(16), 3057-3069.

25. Lozano, F. J., Suárez-Seoane, S., Kelly, M., & Luis, E. (2008). A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sensing of Environment, 112(3), 708-719.

26.  Motlagh, M. H. O. H. A. A. E. Y. (2016). Impacts of ecotourism development in the Arasbaran region using BOCR. Iranian Journal of Forest, 8(2), 153-167.

27. Partonia, Y. A. L. (2016). Site and silvicultural characteristics of Juniperus foetidissima Willd. endangered species in Arasbaran Biosphere Reserve. Iranian journal of Forests and Poplar Research, 24(4), 699-687. doi:10.22092/ijfpr.2016.109447

28. Paz, S., Carmel, Y., Jahshan, F., & Shoshany, M. (2011). Post-fire analysis of pre-fire mapping of fire-risk: A recent case study from Mt. Carmel (Israel). Forest Ecology and Management, 262(7), 1184-1188.

29. Perera, A. H., & Cui, W. (2010). Emulating natural disturbances as a forest management goal: Lessons from fire regime simulations. Forest Ecology and Management, 259(7), 1328-1337.

30. Remmel, T. K., & Perera, A. H. (2001). Fire mapping in a northern boreal forest: assessing AVHRR/NDVI methods of change detection. Forest Ecology and Management, 152(1-3), 119-129.

31. Richter, R., & Schläpfer, D. (2013). Atmospheric/Topographic Correction for Satellite Imagery (ATCOR-2/3 User Guide, Version 8.3. 1, February 2014). In.

32. Salis, M. (2007). Fire Behavior simulation in Mediterranean Maquis using FARSITE (Fire Area Simulator). (PhD Doctoral Thesis), Universita’ Degli Studi Di Sassari,

33.  Shafiei, A. A. J. E. R. a. A. B. (2009). Investigation and comparison of two protected and non-protected forest stands regeneration diversity in Arasbaran. Iranian Journal of Forest, 1(3), 209-217.

34. Shafiei, A. A. J. E. R. A. B. (2011). Effect of physiographical factors on qualitative and quantitative characteristics of Cornus mas L. in Arasbaran forests. Iranian journal of Forests and Poplar Research, 19(3), 407-396. doi:10.22092/ijfpr.2011.107550

35. Shafiei, S. M. E. R. A. A. A. B. (2016). Quantitative and qualitative characteristics and altitudinal zonation of Arasbaran forest protected area, northwestern Iran. Iranian journal of Forests and Poplar Research, 24(3), 540-529. doi:10.22092/ijfpr.2016.107390

36. Shamekhi, S. G. s. m. h. t. (2017). Identification and economic prioritization of non-wood forest products of Arasbaran forests based on traditional harvest statistics (Case Study: Ilganachay Watershed). Iranian Journal of Forest, 9(3), 411-425.

37. Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440.‏

38. Thon, S., Remy, E., Raffin, R., & Gesquière, G. (2007). Combining GIS and forest fire simulation in a virtual reality environment for environmental management. ACE: Arquitectura, Ciudad y Entorno, núm. 4, Junio 2007.

39.  Vadrevu, K. P., Eaturu, A., & Badarinath, K. (2010). Fire risk evaluation using multicriteria analysis—a case study. Environmental monitoring and assessment, 166(1-4), 223-239.