بررسی گسترش شهری و تأثیرآن بر دمای مناطق شهری با استفاده از آنالیز چندزمانه تصاویر ماهواره ای نوری - مطالعه موردی: شهرستان شهرکرد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی عمران - سنجش از دور، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی، دانشگاه تهران

2 استادیار دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی، دانشکده تهران

10.22131/sepehr.2020.38607

چکیده

امروزه بررسی رشد شهرها و اثرات آن در کشورهای در حال توسعه از مسائل حائز اهمیت است. هدف از این پژوهش پایش رشد مناطق شهری در طول 31 سال گذشته، اثر آن بر درجه حرارت سطح زمین و بررسی تغییرات جزایرحرارتی شهر است. به منظور بررسی دقیق تر توسعه مکانی مناطق شهری در طول سال های گذشته تاکنون، از تلفیق در سطح تصمیم نتایج بدست آمده از الگوریتم طبقه بندی با نظارت مبتنی بر شبکه عصبی مصنوعی و نتایج حاصل از شاخص مناطق مسکونی استفاده شده است. به منظور محاسبه دمای سطح زمین در منطقه مورد مطالعه، از الگوریتم بهبود یافته پنجره مجزا برای تصاویر سنجنده مادیس و ماهواره لندست 8 استفاده شده است. در مرحله ارزیابی دقت الگوریتم پیشنهادی، از مجموعه تصاویرچندزمانه ماهواره لندست 5 ولندست 8 مربوط به شهرستان شهرکرد، اخذ شده در سال های 1365، 1368، 1372 1377، 1380، 1387، 1392،1394، 1396و تصاویرمتناظر زمانی سنجنده مادیس (تصاویرشب)در سال های 1380، 1387، 1392، 1394 و 1396استفاده شده است. نتایج بدست آمده نشان دادکه مناطق مسکونی در این شهرستان در طول بازه 31 ساله رشدی در حدود دوبرابر داشته است و مساحت مناطق شهری از 1004 هکتاربه 2112 هکتاررسیده است. علاوه براین، بررسی نقشه های حرارتی تولید شده، نشان می دهد که دمای روزانه سطح شهر و مناطق ساختمانی نسبت به سایر مناطق پایین تر می باشد، ولیکن این امر درطول شب متفاوت است، به طوری که در طول شب مناطق مسکونی و پوشش ساختمانی دارای دمای بالاتری نسبت به سایر مناطق می باشند و این نشان دهنده جزایر گرمایی در شهر است. همچنین نتایج حاصل از آنالیز همبستگی بین مقادیر دمای سطح شهر و شاخص مناطق ساختمانی نشان می دهد که با افزایش رشد مناطق شهری، جزایر حرارتی نیز با روند افزایشی روبه رو هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating urban expansion and its impact on urban temperature using multi-temporal analysis of optical remote sensing images, Case study: Shahr-ekord City

نویسندگان [English]

  • Ramin Mokhtari Dehkordi 1
  • Reza Shahhoseini 2
1 School of surveying and geospatial engineering, College of engineering, University of Tehran, Tehran, Iran
2 School of surveying and geospatial engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
Nowadays, studying urban expansion is very importantin developing countries. Rapid growth of cities has devastating environmental impacts,and irreparable economic and social consequences. Moreover, studying urban expansion is of great importance for managers and planners of a society. Land surface temperature (LST) is one of the important parameters in urban-regional planning.Urban heat, which is usually referred to as urban heat island, can affect human health, theecosystem, surrounding air, air pollution, urban planning, and energy management. The phenomenon of urban heat island (UHI) is closely related toland-use changes in urban areas, especially when natural surfaces turn intoimpermeable urban surfaces, and increases heat flux and reduces latent heat.
 Materials & Methods
In this study, a collection of Landsat-5 multi-temporal satellite images received in 1986, 1989, 1993, 1998, 2001, 2008, and Landsat 8 multi-temporal satellite images received in 2013, 2015 and 2017, was used along with night images of the MODIS sensor recieved in 2001, 2008, 2013, 2015, 2017 (on the same day Landsat-5 and Landsat-8 satellite images were received). In order to classify land cover and calculate land surface temperature usingLandsat 5, Landsat 8 and MODIS sensorsatellite images, initial pre-processing (radiometric and geometric corrections)was performed.In order to classifyland cover in the study area, training areas were selected using Google Earth andthen, land cover classification was carried outusing Neural Network Algorithm. Since, classifying urban areas wasthe priority ofthe present study, Normalized Difference Built-up Index (NDBI) was also used.Ultimately, pixelidentified by classification algorithm and NDBI index was allocated tourban areas. A simple relationship suggested by the United States Geological Survey (USGS) was used to estimate land surface temperature from Landsat-5 imageries.Split-window algorithm was also used to estimate land surface temperature from Landsat-8 and MODIS imageries. Since, Landsat-8 and MODIS imageries were collectedwith only afew hours (or less than that)time difference, and their thermal bands’spectral rangeswere close to each other, Landsat-8 thermal bands’emissivity coefficient with a higher spatial resolution (30 m) was used to calculate land surface temperature from MODIS images.
Results & Discussion
Classifying land cover in Shahr-e Kordusing Landsat-5 and Landsat-8 imageries received in 1986, 1989, 1993, 1998, 2001, 2008, 2013, 2015, and 2017 indicated that in this31-year time period,residential areas were approximately duplicatedand reached from 1004 hectares to 2112 hectares. Analysis of land surface temperature maps using Landsat 5, and Landsat 8 imageries indicated that urban areas and areas with dense vegetation had lower surface temperatures compared to areas with thin vegetation cover. Therefore, land surface temperature of urban areas is lower than the surrounding areas. However, land surface temperature obtained from MODIS imageries indicated that land surface temperature of urban areas is higher at nights. Therefore, urban heat islands in this city occur at nights. Results indicated that with increasingexpansion of urban areas, urban heat islands also intensifyat nights.
 Conclusion
Although, Shahr-ekordis a less developed urban area as compared to other Iranian metropolises,expansion of its constructed areas can stillhave negative effects on the environment and climate of the region. The present study investigates urban growth, and itsinfluence on land surface temperature and occurrence of urban heat island. Thermal maps produced in the present study indicated that daytime air temperature of this city was relatively lower than other regions. But this is not the case at nights: compared to other areas,residential areas have a higher temperature at nights. This indicates the existence of a heat island in the city, and possibly have adverse and devastating effects on humidity, reduces precipitation, changes local winds and the climate. Results also indicate that urban expansion have directlyaffected urban heat islands. Thus, urban heat islandshave intensified and expanded during this time period. Therefore, it is concluded that there is a direct relationship between land surface temperature and land use type.

کلیدواژه‌ها [English]

  • Urban expansion
  • Neural network
  • Split window
  • Urban heat island
1.   Anniballe, R., Bonafoni, S., & Pichierri, M. (2014). Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sensing of Environment, 150, 163-171.

2.   Becker, F., & Li, Z. L. (1995). Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sensing Reviews, 12(3-4), 225-253.

3.   Chavez Jr, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote sensing of environment, 24(3), 459-479.

4.   Cheval, S., & Dumitrescu, A. (2015). The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theoretical and applied climatology, 121(3-4), 631-640.

5.   Chini, M., Pacifici, F., Emery, W. J., Pierdicca, N., & Del Frate, F. (2008). Comparing statistical and neural network methods applied to very high resolution satellite images showing changes in man-made structures at rocky flats. IEEE Transactions on Geoscience and Remote Sensing, 46(6), 1812-1821.

6.   Dai, H., Zhang, X., & Hu, Z. (2017). Urbanization-induced land use and cover changes in Xuzhou, Jiangsu Province since the Mid-1990s. Geosci Res, 2(3), 172-179.

7.   Di Palma, F., Amato, F., Nolè, G., Martellozzo, F., & Murgante, B. (2016). A SMAP supervised classification of landsat images for urban sprawl evaluation. ISPRS International Journal of Geo-Information, 5(7), 109.

8.   Dixon, P. G., & Mote, T. L. (2003). Patterns and causes of Atlanta’s urban heat island–initiated precipitation. Journal of Applied Meteorology, 42(9), 1273-1284.

9.   Grekousis, G., Manetos, P., & Photis, Y. N. (2013). Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the Athens metropolitan area. Cities, 30, 193-203.

10. Johnson, B., Tateishi, R., & Kobayashi, T. (2012). Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers. Remote Sensing, 4(9), 2619-2634.

11. Li, H., Zhou, Y., Li, X., Meng, L., Wang, X., Wu, S., & Sodoudi, S. (2018). A new method to quantify surface urban heat island intensity. Science of the Total Environment, 624, 262-272.

12. Li, Y.-y., Zhang, H., & Kainz, W. (2012). Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. International Journal of Applied Earth Observation and Geoinformation, 19, 127-138.

13. Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., . . . Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14-37.

14. Liu, K., Su, H., Li, X., Wang, W., Yang, L., & Liang, H. (2016). Quantifying spatial–temporal pattern of urban heat island in Beijing: an improved assessment using land surface temperature (LST) time series observations from LANDSAT, MODIS, and Chinese new satellite GaoFen-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 2028-2042.

15. Ma, G., Sui, H., Li, P., & Qin, Q. (2006). A kernel change detection algorithm in remote sense imagery. Paper presented at the 2006 IEEE International Symposium on Geoscience and Remote Sensing.

16. Mao, K., Qin, Z., Shi, J., & Gong, P. (2005). A practical split‐window algorithm for retrieving land‐surface temperature from MODIS data. International journal of remote sensing, 26(15), 3181-3204.

17. Pijanowski, B. C., Tayyebi, A., Doucette, J., Pekin, B. K., Braun, D., & Plourde, J. (2014). A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environmental Modelling & Software, 51, 250-268.

18. Qiao, Z., Tian, G., & Xiao, L. (2013). Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 93-101.

19. Quanliang, C., Changjian, N., Zhan, L., & Jingxuan, R. (2009). Urban heat island effect research in Chengdu city based on MODIS data. Paper presented at the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering.

20. Rizwan, A. M., Dennis, L. Y., & Chunho, L. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1), 120-128.

21. Rozenstein, O., Qin, Z., Derimian, Y., & Karnieli, A. (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors, 14(4), 5768-5780.

22. Shah-Hosseini, R., Safari, A., & Homayouni, S. (2018). Monitoring and Estimating Flood Damages by Object-Oriented Change Detection of Optical and Radar Earth Observations. Journal of Geomatics Science and Technology, 31-32.

23. Shahhosseini, R., Homayouni, S., & Safari, A. (2015). Environmental monitoring based on automatic change detection from remotely sensed data: kernel-based approach. Journal of Applied Remote Sensing, 9(1), 095992.

24. Shah-Hosseini, R., Homayouni, S., & Safari, A. (2015). A hybrid kernel-based change detection method for remotely sensed data in a similarity space. Remote Sensing, 7(10), 12829-12858.

25. Skoković, D., Sobrino, J. A., Jimenez-Munoz, J. C., Soria, G., Juşien, Y., Mattar, C., & Cristóbal, J. (2014). Calibration and validation of land surface temperature for landsat8-tirs sensor. LPVE (Land Product Validation and Evolution.

26. Sidiqui, P., Huete, A., & Devadas, R. (2016). Spatio-temporal mapping and monitoring of Urban Heat Island patterns over Sydney, Australia using MODIS and Landsat-8. Paper presented at the 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA).

27. Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International journal of remote sensing, 10(6), 989-1003.

28. Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar Energy, 81(3), 358-368.

29. Tewkesbury, A. P., Comber, A. J., Tate, N. J., Lamb, A., & Fisher, P. F. (2015). A critical synthesis of remotely sensed optical image change detection techniques. Remote Sensing of Environment, 160, 1-14.

30. Tomlinson, C., Chapman, L., Thornes, J., & Baker, C. (2012). Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. International Journal of Climatology, 32(2), 214-224.

31. Vlassova, L., Perez-Cabello, F., Nieto, H., Martín, P., Riaño, D., & De La Riva, J. (2014). Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sensing, 6(5), 4345-4368.

32. Watts, D. C. (2001). Land cover mapping by combinations of multiple artificial neural networks: University of Calgary.

33. Weng, Q., Fu, P., & Gao, F. (2014). Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote sensing of environment, 145, 55-67.

34. Yang, P., Ren, G., & Liu, W. (2013). Spatial and temporal characteristics of Beijing urban heat island intensity. Journal of applied meteorology and climatology, 52(8), 1803-1816.

35. Zaki, R., Zaki, A., & Ahmed, S. (2011). Land use and land cover changes in arid region: The case new urbanized zone, northeast cairo, egypt. Journal of Geographic Information System, 3(03), 173.

36. Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594.