پهنه بندی ریسک جزر و مدی خور ماهشهر با استفاده از GIS

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار جغرافیای سیاسی، دانشگاه مالک اشتر، تهران

2 دانشجوی دکتری دانشگاه شهیدچمران، اهواز

10.22131/sepehr.2020.38612

چکیده

بندر ماهشهر یکی از بزرگترین بنادر جنوب کشور است که در معرض خطرات ناشی از پیشروی آب دریا از طریق خور ماهشهر قرار دارد. به منظور کاهش ریسک فرآیند جزر و مدی، مدیران بحران و طراحان شهری نیازمند یک طرح مناسب بر اساس نقشه پهنه‌‌بندی خطر در منطقه مورد مطالعه هستند. به هرحال نقشه پهنه‌‌بندی ریسک ناشی از فرآیند جزر و مدی به تنهایی کافی نیست؛ یک سیستم مفید به منظور افزایش کارایی نتایج ریسک ناشی از جزر و مد نیازمند مشخص کردن نقاط حساس و آسیب‌‌پذیر است. در این تحقیق، جهت کاهش ریسک فرآیند جزر و مدی به کمک نرم افزار Hecgeoras حداکثر گسترش پهنه تحت پوشش در زمان مد مشخص شد. به منظور نیل به اهداف مورد نظر از داده‌‌های هیدروگرافی بستر و آمارواطلاعات ایستگاه‌‌ های هیدرومتری با دقت بالا استفاده شد. این پهنه مساحتی در حدود 944 هکتار را احاطه میکند که با توجه به شرایط خاک شناسی منطقه که طی بازدیدهای صحرایی مشاهده شد، عملاً در هنگام فرآیند مد و در زمان بروز حوادث، کمک رسانی زمینی به دلیل چسبندگی بالای خاک منطقه مورد مطالعه، مختل می‌‌شود. با توجه به شرایط خاک شناسی منطقه، غرقاب شدن خاک منطقه باعث افزایش حالت چسبندگی خاک و به نوبه خود عاملی مضاعف در هنگام پیشروی آب دریا در کمک رسانی‌‌ها خواهد بود. در این مطالعه مناطق حساس در معرض آسیب پیشروی آب، شناسایی و معرفی گردید. همچنین با بررسی نتایج و بازدیدهای زمینی، صحت نتایج بدست آمده با قطعیت بیشتری ارائه شد. بدین منظور در دو فصل زمستان 1395 و تابستان 1396 اقدام به بازدیدهای زمینی صورت گرفت تا با توجه به تغییرات اقلیمی نتایج بهتر و دقیقتری حاصل شود. در واقع تهیه نقشه پهنه جزر و مدی در مناطق ساحلی، برای کاهش ریسک فرآیند جزر و مدی بسیار مؤثر و مفید است.

کلیدواژه‌ها


عنوان مقاله [English]

Zoning tide risk in Mahshahr estuary using GIS

نویسندگان [English]

  • Ali Mohammad pour 1
  • Saeid Tourkqashqaeinejad 2
1 Assistant professor of political geography-Malek-Ashtar University of Technology
2 Ph.D. Student of ShahidChamran University, Ahvaz
چکیده [English]

Extended Abstract
Introduction
As one of the largest ports in southern Iran,MahshahrPort faces the risk of seawater intrusion from Mahshahr estuary. Mahshahr and Mousa estuary form an 86 kilometerwaterway. Midday mixed tide is dominant throughout this waterway. Moving towards the vertex of the estuary, this dominance of the midday tidebecomes much more evident. Considering an average depth of 38.4 m, midday tidal wave of M2 with an approximate wavelength of 860 km can be reinforced in this waterway. Grounding of boats and otherammunitions in the basin of Mahshahr port (betweenMajidiyeh garrison and the Persian Gulf) was one of the most important issues during the Imposed War.Mahshahrestuary is the only possible way to access the Persian Gulf fromImam Khomeini port and Majidiyehnaval garrison. From a military perspective,Mahshahrestuary has a special feature that can be considered as a strategic factor and used in various types of active and passive defense. In spite of the shallowness of its internal parts,it is considered to be a safe haven for small vesselsin times of crisis and air attacks. Sometimes, it is critical to use these estuaries and their navigable waterways as the main route for transportation of military weapons, medical aid, and rescue services. Crisis managers and urban planners need an appropriate plan based on risk map of the study areato reduce the risk of tidal process. However, zoning tidal process and mapping its risk are not enough by their own: a useful system needs toidentify sensitive and vulnerable pointsto increase the efficiency of tide risk zoning.
 Materials & Methods
Seeking to reduce the risk of tidal process,the present study determinesmaximum level of development in areas covered during high tides usingHecgeoras software. In order to achieve the goals, hydrographic data of the substrate was used along with information and statistics received from high accuracy hydrometric stations. This zonesurrounds an area of around 944 hectares. Field visits indicate thatduring tidal process, soil conditions in the study area hampers sending emergency aids using land routes.Considering the conditions and structures inMahshahr estuary and the tide zone in the study area, investigating geology of the study area seems necessary.
 Results & Discussion
Considering the soil conditions in the study area, the highest level of soil flooding was observed during high tide. This increasessoil adhesion, affects water intrusion, and hampers sending aids. Critical areas in danger of water intrusion from the estuary (such as Mahshahr gas reservoirs and Majidieh military garrison) were identified in the present study. Moreover, results were investigated and land visits were performed to present accurate and reliable results. Land visits were carried out during 2016-2017 winter and 2017 summer in order to achieve better and more accurate results based on the climatic changes. Investigating the recorded level of water in the study area shows up to 3-metervariation in the water level of Mahshahr estuary. Necessary decisions regardingthe use of different types of vessels, and passive/active defenses can be made in accordance with water level fluctuations and specified times for each water level. During local visits performed for quantitative analysis of results, soil type and its role in passive defense were also discussed.
 Conclusion
Field studies and observations in the study area indicated that 1) dominant soil type of the region is a highly adhesive type with a high clay content; 2) during tide time, soil flooding results in increased adhesion of soil and practically hampers movements of ammunition; 3) In summer and winter, water level changes repeatedly and thus, necessary measures shall be considered for military programs in accordance with the time in which water fluctuations occur. Although the depth of water in the study area is significant, it should be noted that Mahshahr estuary finally reaches an urban area, and thus can be used for military actions. In fact, mapping tide zone is a very effective method for reducing the risk of tidal process in coastal areas.
 

کلیدواژه‌ها [English]

  • Risk zoning
  • tide
  • Mahshahr estuary
  • Hecgeoras
1- تقی‌زاده، ف. بررسی جریان‌های جزر و مدی در خور مریموس. فصلنامه دیدگاه. تابستان 93، 1393.

2- جبلی فرد، س و همکاران. سیستم تحلیل رودخانه (Hec-Ras). انتشارات دانشگاه صنعتی امیرکبیر. 1381.

3- حیدری نژاد، ق. زکی، ب. مدل نمودن جزر و مد در بندر ماهشهر با استفاده از سری‌های زمانی و شناسایی و تفسیر امواج مختلف تشکیل‌دهنده آن با استفاده از F.F.T. پایان نامه کارشناسی ارشد. دانشگاه شهید چمران اهواز، 1377.

4- سازمان نقشه‌برداری کشور، نقشه 1:25000 و 1:5000 بندر ماهشهر، 1396.

5- سازمان هواشناسی استان خوزستان، آمار و اطلاعات ایستگاه‌ بندر ماهشهر، 1396.

6- فرهادی، ا. الرمضان، ق. آنالیز هارمونیکی جزر و مد در خور موسی، پایان نامه کارشناسی ارشد، سازمان بنادر و کشتیرانی، 1375.

7- فلاحی، ف. عظام، م. کرمی خانیکی، ع. مدل‌سازی عددی جریان های جزرومدی و انتشار آلودگی در خور ماهشهر با استفاده از مدل MIKE3. پانزدهمین کنفرانس دینامیک شاره ها، 1392.

8- کرمی خانیکی، ع. بخشنده، ف. لاری، ک. تأثیر پدیده جزر و مد بر الگوی جریان و انتقال رسوب در مصب‌ها با کمک نرم افزار مایک 21. مجله مهندسی منابع آب. سال هفتم، 1393.

9- گزارش مطالعات مدل‌سازی خور ماهشهر، طرح ساماندهی خور ماهشهر، شهرداری ماهشهر، 1387.

10. Aldridge, B, N., Garrett, J, M. Roughness coefficients for stream channels in Arizona. Prepared in cooperation with the Arizona Highway Department. Tucson, Arizona February 1973.

11. Apel, H., Thieken, A., Merz, B., Bl€oschol, G., 2006. A probabilistic modelling system for assessing flood risks. Nat. Hazards 38 (1e2), 79e100.

12. Arduino, G., Reggiani, P., Todini, E., 2005. Recent advances in flood forecasting and flood risk assessment. Hydrol. Earth Syst. Sci. 9 (4), 280e284.

13. Baky, A.A., Zaman, A.M., Khan, A.U., 2012. Managing Flood Flows for Crop Production Risk Management with Hydraulic and GIS Modeling: Case Study of Agricultural Areas in Shariatpur APCBEE Procedia, pp. 318e324.

14. Bates, P.D., De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. J. Hydrol. 236 (1e2), 54e77

15. Ben Khalfallah, C., Saidi, S. Spatiotemporal floodplain mapping and prediction using HEC-RAS - GIS tools: Case of the Mejerda river, Tunisia. Journal of African Earth Sciences. 2018, Vol 142, pp 44-51.

16. Bhuiyan, M., Dutta, D., 2012. Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise. Nat. Hazards 61 (2), 729e743.

17. Dawes, W., Zhang, Y., Leighton, B., Perraud, J.-M., Joehnk, K., Yang, A., Wang, B., Frost, A., Elmahdi, A., Smith, A., Daamen, C., 2013. The Australian water ressource assessment system (AWRA). In: Proceedings of the 20th International Congress on Modelling and Simulation (MODSIM2013). Adelaide, Australia.

18. Dutta, D., Herath, S., Musiake, K., 2006. An application of a flood risk analysis system for impact analysis of a flood control plan in a river basin. Hydrol. Process. 20 (6), 1365e1384.

19. Dutta, D., Teng, J., Vaze, J., Lerat, J., Marvanek, S., 2013. Storage-based approaches to build floodplain inundation modelling capability in river system models for water resources planning and accounting. J. Hydrol 504 (0), 12e28.

20. Ervine, D.A., MacLeod, A.B., 1999. Modelling a river channel with distant floodbanks. Proc. Inst. Civil Eng. Water Maritime Energy 136, 21e33.

21. Euchi, K. , 2013. Protection contre les inondations de la ville de Kasserine. Institut National Agronomique De Tunisie, p. 195.

22. Foudi, S., Os_es-Eraso, N., Tamayo, l., 2015. Integrated spatial flood risk assessment: the case of Zaragoza. Land Use Pol. 42, 278e292.

23. Foudi, S., Os_es-Eraso, N., Tamayo, l., 2015. Integrated spatial flood risk assessment: the case of Zaragoza. Land Use Pol. 42, 278e292.

24. Fread, D.L., Hsu, K.S., 1993. Applicability of two simplified flood routing methods:level-pool and Muskingum-Cunge. In: ASCE National Hydraulic Engineering Conference, pp. 1564e1568. San Francisco, 26-30 July 1993.

25. Gichamo, T.Z,. Popescu, I,. Jonoski, A., Solomatine, D. River cross-section extraction from the ASTER global DEM for flood modeling. Environmental Modelling & Software. Vol 31, 2012, pp 37-46.

26. Gumilar, I., Abidin H.Z., Andres, H., Mahendra, A.D., Sidiq, T.P., Gamal, M. Studi Potensi Kerugian Ekonomi Akibat Penurunan Muka Tanah (Study of potential economic losses as a result of land subsidence). Proceeding of FIT ISI Annual 2009. Department of Geodetic Engineering. Diponegoro University. Semarang-Indonesia. (2009).

27. HEC, 2002. HEC-GeoRAS e an Extension for Support of HEC-RAS Using ArcView, CPD-76, October 2002. Hydrologic Engineering Center, Institute for Water Resources, U.S. Corps of Engineers, Davis, CA.

28. HEC, 2005. HEC-GeoRAS e an Extension for Support of HEC-RAS Using ArcGIS (v8.3/ 9.1), CPD-83, September 2005. Hydrologic Engineering Center, Institute for Water Resources, U.S. Corps of Engineers, Davis, CA.

29. HEC, 2009. HEC-GeoRAS e an Extension for Support of HEC-RAS Using ArcGIS (v9.2/ 9.3), CPD-83, September 2009. Hydrologic Engineering Center, Institute for Water Resources, U.S. Corps of Engineers, Davis, CA.

30. HEC, 2016. HEC-RAS River Analysis System, User’s Manual, Version 5.0, CPD-68, February 2016. Hydrologic Engineering Center, Institute for Water Resources, U.S. Corps of Engineers, Davis, CA.

31. Kim, H., Cho, Y., 2011. Numerical model for flood routing with a Cartesian cut-cell domain. J. Hydraul. Res. 49 (2), 205e212.

32. Marriott, S., 1992. Textural analysis and modeling of a flood deposit - river Severn. UK. Earth Surf. Process. Landf. 17 (7), 687e697.

33. Merz, B., Kreibich, H., Schwarza, R., Thieken, A., 2010. Review article ‘Assessment of economic flooddamage’. Nat. Hazards Earth Syst. Sci. 10 (8), 1697e1724.

34. Nugraha, A., Santosa, P., Aditya, T. Dissemination of tidal flood risk map using online map in semarang (International Conference on Tropical and Coastal Region Eco-Development 2014 (ICTCRED 2014)). Procedia Environmental Sciences, 2015. Vol 23, pp 64-71.

35. Pizzuto, J.E., 1987. Sediment diffusion during overbank flows. Sedimentology 34 (2), 301e317.

36. Selmi, M., 2013. Protection contre les inondations des Zones Nord et Est du Grand Tunis. Institut National Agronomique De Tunisie, p. 90.

37. US Army Corps of Engineers, Davis California, 2016. Hec-RAS. River Analysis System. Hydraulic Reference Manual.Version 5.0

38. Vaze, J., Viney, N., Stenson, M., Renzullo, L., Van Dijk, A., Dutta, D., Crosbie, R., Lerat, J., Penton, D., Vleeshouwer, J., Peeters, L., Teng, J., Kim, S., Hughers, J.,

39.          Yoon, T.H., Kang, S.K., 2004. Finite volume model for two-dimensional shallow water flows on unstructured grids. J. Hydraul. Eng. 130 (7), 678e688.