ارزیابی الگوریتم های مختلف ادغام تصاویر در تهیه نقشه شاخص های گیاهی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، هرمزگان.

2 دانشیار گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، هرمزگان

3 استادیار گروه نقشه برداری، دانشکده مهندسی، دانشگاه زابل، زابل، سیستان و بلوچستان

4 دانشکده جغرافیا، زمین و علوم محیطی- دانشگاه پلی موث- پلی موث- دوون- بریتانیا

5 استادیارگروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، هرمزگان

10.22131/sepehr.2020.38616

چکیده

استفاده از تصاویر با قدرت تفکیک مکانی بیشتر در مناطق وسیع همچون استان خراسان جنوبی، به دلیل پهنای کوچک تر هر فریم تصویر لندست به همراه تفکیک زمانی بیشتر، امکان دسترسی به تصاویر همزمان جهت بررسی تغییرات کوتاه مدت همچون تغییرات پوشش گیاهی را با چالش همراه میکند. در پژوهش حاضر، به منظور دسترسی به اطلاعات طیفی همزمان پوشش گیاهی در استان خراسان جنوبی، از تکنیک ادغام تصاویر ماهوارهای لندست 8 و مادیس استفاده گردید. برایاین منظور ابتدا نتایج حاصل از شش الگوریتم ادغام، شامل NNDiffuse، HPF، Brovey، Gram-Schmidt، PC وCN در یک محدوده آزمایشی در استان خراسان جنوبی با استفاده از معیارهای آماری مورد بررسی و ارزیابی قرار گرفت. در ادامه با کاربرد مناسب ترین الگوریتم ادغام، اطلاعات طیفی و مکانی بازتاب باند قرمز (RED)ومادون قرمزنزدیک (NIR)یازده تصویر موزائیک شده لندست 8 (30 متر) با باند REDوNIRیک تصویرمادیس (250 متر) ادغام گردید. سپس جهت بررسی پوشش گیاهی، با تصویر ماهوارهای ادغام شده، شاخص NDVIوHVCI همزمان، در سطح استان خراسان جنوبی تهیه گردید. نتایج به دست آمده نشان داد که الگوریتم NNDiffuse از دقت مطلوب تری جهت ادغام باندهای قرمز و مادون قرمز نزدیک لندست 8 و مادیس برخوردار است، به طوری که شاخص گیاهیNDVI به دست آمده از این الگوریتم در مقایسه با تصویر لندست 8 اصلی، از کمترین خطای آمای RMSE(0/0311) و MAE(0/0181) برخوردار است. همچنین بررسی مقادیر شاخص NDVI به دست آمده از الگوریتمهای ادغام، در طول خط ترانسکت طولی سیستماتیک تصادفی در سه کاربری اراضی کشاورزی، شهری و مرتعی نیز نشان داد که شاخص به دست آمده از الگوریتم NNDiffuse انطباق بهتری با شاخص NDVI به دست آمده از تصویر لندست 8 اصلی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the use of different image fusion algorithms for vegetation indices mapping

نویسندگان [English]

  • Sara Nakhaee Nezhad Fard 1
  • Hamid Gholami 2
  • Davood Akbari 3
  • Matt W. Telfer 4
  • Marzieh Rezaee 5
1 Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran
2 Department of natural resources engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran
3 Department of surveying, University of Zabol, Zabol, Sistan and Baloochestan, Iran
4 School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, Devon, PL4 8AA , UK
5 Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran
چکیده [English]

Extended Abstract
Introduction
Among all Earth’s ecosystems, arid and semi-arid regions (about 30% of the Earth’s land) have experienced significant degradation over the past century due to the intensive land use practices and the increasing effects of droughts and climate changes (Maynard et al., 2016). Remote sensing is capable of detecting several groups of disturbances and changes, and has been widely used as a toolto identify long-term changes. Recent technological advancements in the methodology of mapping and monitoring land cover changesprovide new opportunities for the utilization of satellite imageries with high temporal frequency. Image fusion technique has been applied in different fields of environmental science, such asmapping crop growth, studying daily pollution of water resources, studying patterns of short-time ecological changes, determining regions with short-term erosion risk, etc. Image fusion algorithms include color combinations in three bands ofRGBimages, statistical and multi-scale methods. The present study seeks toevaluate the efficiency of image fusion algorithms and select the best algorithm for mapping vegetation in SouthKhorasan Province.
 Materials and Methods
Following the pre-processing ofLandsat 8 and MODIS images, six image fusion algorithms, including NNDiffuse, HPF, Brovey, Gram-Schmidt, PC and CN, were studied and evaluated usingdifferent statistical criteria. Three statistical indices, including Root MeanSquare Error(RMSE), Mean Absolute Error(MAE) and Mean Error (MEB)were usedto evaluate the aforementioned algorithms.Then, the best image fusion algorithm was used to merge two different images received from Landsat8 (30m) and MODIS (250m). Finally, two vegetation indices, including NDVI and HVCI, were usedto map vegetation in SouthKhorasan Province. 
 Results and Discussion
Results indicate that all six algorithms used in the present research can improvespatial resolution of the merged images. Compared to other 5 algorithms, NNDiffusecan merge thered and NIR bands of Landsat 8 and MODISwith a relatively higher accuracy. Therefore,NDVI extracted from this algorithm has the lowest RMSE and MAE compared to the original Landsat 8images. NDVI obtained from thefusion algorithms used in systematic-random transects of three land uses (including agricultural, urban and pastures) indicate that the index obtained from NNDiffuse algorithm has a better conformitywith the NDVI obtained from the original Landsat 8image. Then,redand NIR bands of Landsat8 and MODIS were combined forsimultaneous mapping of NDVI and HVCI in the case study area. Overall, a great part of SouthKhorasan Province has a vegetation cover of less than 10% and 40-50%, vegetation cover is only limited to small parts of the study area (agricultural land use and gardens). 
 Conclusions
Generally, accessing simultaneous satellite images with high spatial resolutions, such as the Landsat series, is considered to be a challenge in vast area. The present study took advantage of different algorithms for image fusion and vegetation mapping in South Khorasan Province. Image fusion techniques, such as integration of Landsat and MODIS images, can be very useful for mapping purposes. Evaluation of 6image fusion techniques indicated thatNNDiffuse algorithm is the most suitable method for mapping vegetation in the study area.

کلیدواژه‌ها [English]

  • NNDiffuse algorithm
  • NDVI
  • Vegetation cover
  • RED band
  • NIR band
  1. اسمعیل نژاد، پودینه؛ مرتضی، محمدرضا؛ 1396؛ ارزیابی سازگاری با تغییرات اقلیمی در مناطق روستایی جنوب خراسان جنوبی. مخاطرات محیط طبیعی، دوره 6، شماره 11، صفحات 100-85.
  2. امینی، شتایی جویباری؛ محمدرشید، شعبان؛ 1390؛ ادغام تصاویر ماهواره‌های Landsat و IRS-1C با استفاده از روش های IHS و PANSHARP جهت تفکیک جنگل از غیر جنگل. همایش ملی جنگل های زاگرس مرکزی، قابلیت ها و تنگناها، خرم‌آباد – لرستان، کانون دانشجویی همیاران طبیعت - جهاد دانشگاهی لرستان، 2 آذر 1390.
  3. حسینی، روستا، زمانی‌پور، تیموری؛ سید مجتبی، کوروش، اسدالله، مصطفی؛  1395؛ ادراک کشاورزان نسبت به پیامدهای خشکسالی با رویکرد پدیدارشناسی مطالعه موردی (استان خراسان جنوبی). پژوهش‌های ترویج وآموزش کشاورزی، دوره 9، شماره 4، پیاپی 36، صفحات 74-63.
  4. رمزی، شهیدی، خاشعی سیوکی؛ راضیه، علی، عباس؛ 1393؛ پتانسیل‌یابی آبیاری بارانی با استفاده از روش فرآیند تحلیل سلسله مراتبی فازی در استان خراسان جنوبی.  مهندسی آبیاری و آب ایران، دوره 4، شماره 16، صفحات 11-1.
  5. محمد نژاد نیازی، مختارزاده، سعیدزاده؛ سعید، مهدی، فاطمه؛ 1395؛ ارائه روش ادغام تصاویر چندطیفی وپانکروماتیک IHS-GA مبتنی بر مناطق بهبود یافته گیاهی. نشریه علمی پژوهشی علوم و فنون نقشه‌برداری، دوره 6، شماره 1، صفحات 235-248.
  6. هارونی, مجید و محسن کریمی، 1393، یک روش جدید بهبود کیفیت تصاویر ماهواره‌ای به کمک ادغام تصویر در سطح پیکسل و ویژگی، سومین کنفرانس ملی ایده‌های نو در مهندسی برق، خوراسگان، دانشگاه آزاد اسلامی واحد اصفهان. صفحات 974-968.
7. Abdikan, S., Sanli, F.B. (2012).Comparison of different fusion algorithms in urban and agricultural areas using SAR (palsar and radarsat) and optical (spot) images. Boletim de Ciências Geodésicas 18(4): 509-531.

8. Atkinson, P.M. (2013). Downscaling in remote sensing. International Journal of Applied Earth Observation and Geoinformation 22: 106-114.

9. Boyte, S.P., Wylie, B.K., Major, D.J. (2016).Cheatgrass Percent Cover Change: Comparing Recent Estimates to Climate Change−Driven Predictions in the Northern Great Basin. Rangeland Ecology & Management, 69(4): 265-279.

10. Boyte, S.P., Wylie, B.K., Rigge, M.B., Dahal, D. (2017).Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA. GIScience & Remote Sensing: 1-24.

11. Chen, S.H., Su, H.B., Tian,J., Zhang and, R.H., Xia, J. (2011). Estimating soil erosion using MODIS and TM images based on support vector machine and à trous wavelet. International Journal of Applied Earth Observation and Geoinformation, 13(4): 626-635.

12. Dahiya, S., Garg, P.K., Jat, M.K. (2013). A comparative study of various pixel-based image fusion techniques as applied to an urban environment. International Journal of Image and Data Fusion 4(3): 197-213.

13. Dube, T. and Mutanga, O. (2015).Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 36-46.

14. Gao, F., Anderson, M., Zhang, X., Yang, Z., Alfieri, J.G., Kustas, W.P., Mueller, R., Johnson. D.M., Prueger, J.H. (2017).Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 188: 9-25.

15. Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., Yang. (2015). Fusing Landsat and MODIS Data for Vegetation Monitoring. IEEE Geoscience and Remote Sensing Magazine, 3(3): 47-60.

16. Gerstmann, H., Möller, M., Gläßer, C. (2016).Optimization of spectral indices and long-term separability analysis for classification of cereal crops using multi-spectral RapidEye imagery. International Journal of Applied Earth Observation and Geoinformation, 52: 115-125.

17. Hurley, M.A., Hebblewhite, M., Gaillard, J.-M., Dray, S., Taylor, K. A., Smith, W. K., Zager, P., & Bonenfant, C. (2014).Functional analysis of Normalized Difference Vegetation Index curves reveals overwinter mule deer survival is driven by both spring and autumn phenology. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1643): 20130196.

18. Kennedy, R.E.; Serge; A., W.B, Cohen; Gomez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; Meigs, G.W.; Pflugmacher, D.; Phinn, S.R.; Powell, S.L.; Scarth, P.; Sen, S.; Schroeder, T.A.; Schneider, A.; Sonnenschein, R.; Vogelmann, J.E.; Wulder, M.A.; Zhu, Z. (2014).Bringing an ecological view of change to Landsat-based remote sensing. Frontiers in Ecology and the Environment, 12(6): 339-346.

19. Klonus, S, Ehlers, M. (2009). Performance of evaluation methods in image fusion. In Performance of evaluation methods in image fusion. 2009 12th International Conference on Information Fusion, 1409-1416.

20. Maynard, J.J, Karl, J.W, Browning, D.M. (2016).Effect of spatial image support in detecting long-term vegetation change from satellite time-series. Landscape Ecology, 31(9): 2045-2062.

21. Möller, M., Gerstmann, h., Gao, F., Dahms, T.C., Förster, M. (2017).Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk. CATENA, 150: 192-205.

22. Mushore, T. D., Mutanga, O., Odindi, J., Dube, T. (2017).Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto International, 32(8): 886-899.

23. Olsoy, P., Mitchell, J., Glenn, N., Flores, A. (2017).Assessing a Multi-Platform Data Fusion Technique in Capturing Spatiotemporal Dynamics of Heterogeneous Dryland Ecosystems in Topographically Complex Terrain. Remote Sensing, 9(10): 981.

24. Pushparaj, J., Hegde, A.V. (2017).Evaluation of pan-sharpening methods for spatial and spectral quality. Applied Geomatics, 9(1): 1-12.

25. Sarp, Gulcan. (2014).Spectral and spatial quality analysis of pan-sharpening algorithms: A case study in Istanbul. European Journal of Remote Sensing 47(1): 19-28.

26. Sun, W., Chen, B., Messinger, D. (2014).Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images. Optical Engineering, 53(1), 013107

27. Swain, R., Sahoo, B. (2017). Mapping of heavy metal pollution in river water at daily time-scale using spatio-temporal fusion of MODIS-aqua and Landsat satellite imageries. Journal of Environmental Management, 192: 1-14.

28. Tewes, A., Thonfeld, F., Schmidt, M., Oomen, R., Zhu, X., Dubovyk, O., Menz, G., Schellberg, J. (2015).Using RapidEye and MODIS Data Fusion to Monitor Vegetation Dynamics in Semi-Arid Rangelands in South Africa. Remote Sensing, 7(6): 6510.

29. Walker, J. J., De Beurs, K.M., Wynne, R.H. (2014). Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sensing of Environment, 144: 85-97.

30. Wu, M., Huang, W., Niu, Z., Wang, C., Li, W., Yu, B. (2018).Validation of synthetic daily Landsat NDVI time series data generated by the improved spatial and temporal data fusion approach. Information Fusion, 40: 34-44.

31. X. Zhang, J., Yang, J., Reinartz, P. (2016).The optimized block-regression-based fusion algorithm for pan sharpening of very high resolution satellite imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic.

32. Xu, S., Ehlers, M. (2017). Hyperspectral image sharpening based on Ehlers fusion.International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W7: 941-947.

33. Xue, J., & Su, B. (2017).Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors, 2017: 17.

34. Zhang, C., & Kovacs, J. M. (2012).The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6): 693-712.

35. Zhao, J., Huang, L., Yang, H., Zhang, D., Wu, Z., Guo, J. (2016).Fusion and assessment of high-resolution WorldView-3 satellite imagery using NNDiffuse and Brovey algorithms. In Fusion and assessment of high-resolution WorldView-3 satellite imagery using NNDiffuse and Brovey algorithms. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2606-2609.