بررسی جزایر حرارتی شهری و ارتباط آن با شرایط آلودگی هوا و شاخص های NDVI و NDBI در شهر اراک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار دانشکده علوم زیستی، دانشگاه خوارزمی

2 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 عضو هیأت علمی مرکز تحقیقات کشاورزی و منابع طبیع استان مرکزی

10.22131/sepehr.2020.38619

چکیده

درک توزیع مکانی و زمانی دمای سطح زمین یا LST جهت یافتن عوامل ایجاد آن، در مدیریت محیط زیست شهری امری ضروری خواهد بود. از اینرو هدف از پژوهش حاضر، تجزیه و تحلیل کمی جزایر حرارتی یا UHI شهر اراک و بررسی ارتباط بین شاخصهای NDVI، NDBI و آلودگی هوا با LST، با استفاده از تصاویر سنجندههای ETM+, TM و OLI میباشد. ابتدا بر روی تصاویر پیشپردازشهای لازم جهت تهیه نقشهکاربری با استفاده از روش طبقهبندی نظارتشده انجام شد و کاربریهای اراضی موجود در محدوده مورد مطالعه شامل: مراتع فقیر، مراتع متوسط، مراتع خوب، اراضی بایر، دریاچه شور، اراضی کشاورزی و اراضی مسکونی استخراج شدند. سپس تصاویر مورد استفادهبرای تهیه شاخصهای NDVI و NDBI به بازتاب جو تبدیل و دمای سطح زمین با استفاده از روش مؤسسه علوم پروژه لندست در محیط GIS تهیه شدند. آزمونهای کولموگروف-اسمیرنوف، t جفتی و آزمون همبستگی پیرسون جهت آنالیزهای آماری شاخصهای سنجش از دور و دادههای کیفیت هوا استفاده شدند. نتایج آزمون کلموگروف-اسمینرف نشان داد، تمامی شاخصهای سنجش از دور از توزیع نرمال پیروی میکنند. نتایج آزمون t جفتی، حاکی از وجود اختلاف معنیدار در تمام کاربریها بجز کاربری مسکونی با کاربری دریاچه شور در شاخصهای LST و NDVI و همچنین وجود اختلاف معنیدار در تمام کاربریهای موجود در محدوده مورد مطالعه برای شاخص NDBI بود. همچنین نتایج آزمون t جفتی برای متغیر دمای هوای و LST، نشان داد که اختلاف معنیدار بین تمام کاربریها با کاربری مسکونی وجود ندارد و همبستگی بین دمای هوا با LST و دادههای کیفیت هوا  شامل ذرات معلق کمتر از 2/5 میکرون در سطح 99 درصد معنیدار بود. نتایج تحقیق حاضر حاکی از آن بود که استفاده از دادههای سنجش از دور میتواند نقش مهمی در مدیریت فضای شهری داشته باشد به نحو کارآمدی مدیران شهری را در برنامهریزی فضای شهری یاری رساند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating Urban Heat Islands (UHI) and the irrelation with air pollution, NDVI and NDBI in Arak using RS techniques

نویسندگان [English]

  • Mehrdad Hadipour 1
  • Hamid Darabi 2
  • Aliakbar Davudirad 3
1 Associate Professor of Kharazmi University, Tehran, Iran
2 Ph.D Candidate, Sari Agriculture Science and Natural Resources University, Sari, Iran
3 Academic Member of Agricultural and Natural Research and Education Center of Markazi Province, Iran
چکیده [English]

Extended Abstract
Introduction
With the development of urbanization, a large part of agricultural areas and forests have been replaced by residential areas, industrial centers, and other infrastructures. This is due to human life style and his endeavor to reach sustainable urbanization. A series of changes in the reflection of light from different material’s surface, heat storage and heat transfer, have changednatural and artificial landscape orsignificantly affected local climate. Therefore, public concerns about urban sprawl, increasing urban population and quality of urban environmental have motivated planners to seek better perspectives for development of urban areas. Increasing temperature of urban areas is considered to be one of the most important environmental problem in cities. This increasing temperature results in creation of Urban Heat Islands (UHI) in some parts of urban areas, which are significantly warmer than surrounding urban environment. Therefore,a new and successful method of urban planning should be introduced with respect to spatial distribution of land surface temperature (LST) to achieve better urbanization and reduce environmental impacts on cities.
  Materials & Methods
The present study takes advantage of Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) thematic maps to investigate therelationship between air pollution, and two indexes of NDBI and NDVI with land surface temperature (LST) and Urban Heat Islands (UHI) in urban areas. Satellite imageries of Arak (an industrial city in Iran) has been chosen for the case study. Urban and natural areas and impermeable surfaces such as roads, buildings and other constructions are rapidly developing in this city. In the first step of research methodology, necessary pre-processing programs such as radiometric corrections were performed on the satellite imageries. Then satellite imageries were transformed toatmospheric images to produce NDBI and NDVI indexes.  Finally,land surface temperature maps wereproduced using the method of Landsat Project Science Institute in Arc GIS 10.3. To classify satellite images, seven land use classes were identified as poor pastures, averagepastures, rich pastures, bare lands, Lake’s Shore, agricultural lands and residential lands.Then, training images classification method was used to collect samples from the study area and classification was performed using maximum likelihood method for monitoring. In order to analyze LST parameter using NDBI and NDVI indexes, air quality data,and statistical methods like Kolmogorov-Smirnov test, paired t test and Pearson correlation test were used. The results of Kolmogorov-Smirnov test indicated that data used in this study was normally distributed. The results of t test, temperature recorded by synoptic stations in Arak and remotely sensed data indicated that the accuracy of the test is more than 5%. Thus, the difference between residential land use and other urban land uses was not statistically significant. Moreover, results indicate that there is a more than 99 percent correlation between temperature recorded by the synoptic stations in Arak and data collected from satellite imageries. Results of correlation with remotely sensed data indicatedthatthere is a significant correlation between99 percent of results and less than 5 micron particles.
 Results & Discussion
Correlation between air pollution data andremotely sensed data (LST) indicated that LST and less than 5.2 micronparticlesare significantly correlated with 99% accuracy. Urban heat island usually occurs in metropolitan area and its surroundings. Due to climate changes, urban heat islands are constantly developing. This results in increased energy consumption for air conditioning systems. Thus, reducing the effects of urban heat islands has become an important global issue. The present study has successfully explained the effects of urban heat islands and their environmental problems on normal life. Detailed program of related measures and policies should reduce the intensityof urban heat island. Final development of the cities should be based on land surface temperatures in surrounding areas in a way that cities can reach a lower surface temperature as compared to the temperature before urban development.
 Conclusion
Following strategies are suggested for a more comprehensive consideration of urban green spaces in urban planning and future development of cities: Paying attention to architecturalcriteria and urban land use, and alsopaying attention to soil and water management parametersbased on the principles of green architecture, paying attention to standards of anthropogenic temperature rise caused by human activities, and the problem of urban heat islands. Moreover, it is crucially important to prepare the necessary situation for the community to reach a good physical and mental health.

کلیدواژه‌ها [English]

  • Landsat satellite
  • Land surface temperature
  • Land use
  • Particles
  • Paired-sample T test
  1. المدرسی، رحیم‌آبادی، خضری؛ سیدعلی، ابوالفضل، صادق. (1393)، پهنه‌بندی و مقایسه دمای سطح زمین با استفاده از دو باند حرارتی 10 و 11 تصویر لندست 8 (مطالعه موردی: شهرستان بهشهر). نخستین همایش ملی کاربرد مدل‌های پیشرفته تحلیل فضایی (سنجش از دور و GIS) در آمایش سرزمین، دانشگاه آزاد اسلامی واحد یزد، ص 11-1.
  2. حاجیلو، المدرسی، زرنگ، سرکارگراردکانی؛ مرضیه، سیدعلی، نسیم، علی. (1393)، پایش دمای سطح زمین و بررسی رابطه کاربری اراضی با دمای سطح با استفاده از تصویر سنجنده +ETM و OLI (مطالعه موردی: استان قم). نخستین همایش ملی کاربرد‌ مدل‌های پیشرفته تحلیل فضایی (سنجش از دور و GIS) در آمایش سرزمین، دانشگاه آزاد واحد اسلامی یزد، ص 10-1.
  3. غضنفری ‌مقدم، علیزاده، ناصری‌ مقدم، فریدحسینی؛ محمدصادق، امین، مهیار، علیرضا. (1389)، بررسی اثر جزایر حرارتی شهری بر روند تغییرات ریزش‌های جوی مشهد. نشریه آب و خاک (علوم و صنایع کشاورزی)، شماره 2، ص 366-359.
  4. فاطمی، س.ب. و رضایی، ی. (1385)، مبانی سنجش از دور انتشارات آزاده 257 صفحه.
5. Aniello, C., Morgan, K., Busbey, A., & Newland, L. (1995). Mapping micro-urban heat islands using Landsat TM and a GIS. Computers & Geosciences, 21(8), 961-967.
6. Chen, W., Zhang, Y., Gao, W., & Zhou, D. (2016). The Investigation of Urbanization and Urban Heat Island in Beijing Based on Remote Sensing. Procedia-Social and Behavioral Sciences, 216, 141-150.
7. Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote sensing of environment, 104(2), 133-146.
8. Kikon, N., Singh, P., Singh, S. K., & Vyas, A. (2016). Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society, 22, 19-28.
9. Kumar, D., & Shekhar, S. (2015). Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing. Ecotoxicology and environmental safety, 121, 39-44.
10. Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sensing, 3(7), 1535-1552.
11. Sailor, D. J. 2014. A holistic view of the effects of urban heat island mitigation. Low Carbon Cities: Transforming Urban Systems. Routledge. New York, 270-281.
12. Shahmohamadi, P., Che-Ani, A. I., Abdullah, N., Tahir, M. M., Maulud, K. N. A., & Mohd-Nor, M. F. I. (2010). The Link between urbanization and climatic factors: a concept on formation of urban heat island. WSEAS Transactions on Environment and Development, 6(11), 754-768.
13. Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440.
14. Southworth, J. (2004). An assessment of Landsat TM band 6 thermal data for analysing land cover in tropical dry forest regions. International journal of remote sensing, 25(4), 689-706.
15. Streutker, D. R. (2002). A remote sensing study of the urban heat island of Houston, Texas. International Journal of Remote Sensing, 23(13), 2595-2608.
16. Taleb, H., & Taleb, D. (2014). Enhancing the thermal comfort on urban level in a desert area: Case study of Dubai, United Arab Emirates. Urban forestry & urban greening, 13(2), 253-260.
17. Wang, Y., & Akbari, H. (2015). Development and application of ‘thermal radioactive power ‘for urban environmental evaluation. Sustainable Cities and Society, 14, 316-322.
18. Wang, Y., Berardi, U., & Akbari, H. (2015). The Urban Heat Island effect in the city of Toronto. Procedia Engineering, 118, 137-144.
19. Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89(4), 467-483.
20. Xiong, Y., Huang, S., Chen, F., Ye, H., Wang, C., & Zhu, C. (2012). The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote sensing, 4(7), 2033-2056.
21. Yang, J., Gong, P., Zhou, J., Huang, H., & Wang, L. (2010). Detection of the urban heat island in Beijing using HJ-1B satellite imagery. Science China Earth Sciences, 53, 67-73.
22. Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583-594.
23. Zhang, Y., Odeh, I. O., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), 256-264.
24. Zhang, Y., Yiyun, C., Qing, D., & Jiang, P. (2012). Study on urban heat island effect based on Normalized Difference Vegetated Index: a case study of Wuhan City. Procedia environmental sciences, 13, 574-581.