ارزیابی مؤلفه های زاویه انحراف قائم حاصل از تلفیق مدل ژئوپتانسیلی جهانی و مدل رقومی زمین در ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه ژئودزی و مهندسی نقشه برداری، دانشگاه تفرش، تفرش،ایران

2 استاد، گروه مهندسی نقشه برداری، قطب علمی مهندسی نقشه برداری در مقابله با سوانح طبیعی، پردیس دانشکده‌های فنی، دانشگاه تهران، ایران

3 فارغ التحصیل کارشناسی ارشد دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران

10.22131/sepehr.2020.40468

چکیده

در حال حاضر بالاترین قدرت تفکیک مکانی مدلهای ژئوپتانسیلی جهانی حدود 5 دقیقه میباشد، در حالی که مدلهای توپوگرافی با قدرت تفکیک مکانی حدود 3 ثانیه و بالاتر در دسترس است. یکی از روشهایی که برای افزایش دقت مدلهای ژئوپتانسیلی جهانی در تولید تابعکهای مختلف میدان ثقل مورد استفاده قرار میگیرد، تلفیق این مدلها با مدلهای توپوگرافی با قدرت تفکیک مکانی بالاتر از مدل ژئوپتانسیلی است. در این مقاله هدف ارزیابی مؤلفههای زاویه انحراف قائم حاصل از تلفیق مدل ژئوپتانسیلی جهانی و مدل توپوگرافی با قدرت تفکیک مکانی بالا در ایران میباشد. تحقیق حاضر، از مدل EGM2008 با قدرت تقکیک مکانی حدود 5 دقیقه به عنوان مدل ژئوپتانسیلی جهانی، از مدل SRTM با قدرت تفکیک مکانی 3 ثانیه به عنوان مدل توپوگرافی و از مدل DTM2006 برحسب هارمونیکهای کروی تا درجه 2190 به عنوان سطح هموار مرجع برای تولید مدل توپوگرافی باقیمانده (RTM) استفاده نموده است. روش تحقیق به این صورت است که ابتدا با استفاده از مدل جهانی، مؤلفههای زاویه انحراف قائم در 10 ایستگاه لاپلاس ایران محاسبه شده و سپس با استفاده از مدل توپوگرافی باقیمانده تصحیحی برای این مؤلفهها بدست میآید. در پایان مؤلفههای زاویه انحراف قائم محاسبه شده توسط مدل جهانی به تنهایی و تلفیق مدل جهانی و مدل توپوگرافی باقیمانده با مؤلفههای زاویه انحراف قائم حاصل از مشاهدات نجومی و ژئودتیکی در 10 ایستگاه لاپلاس مقایسه میشوند. نتایج این مقایسهها حاکی از آن است که تلفیق مدل جهانی EGM2008 و RTM باعث بهبود حدود 15% در مؤلفه شمالی-جنوبی(𝜉)  و 4/1% بهبود در مؤلفه شرقی-غربی(𝜂)در منطقه تست ایران میگردد.همچنین ارزیابیها نشان میدهند که خطای نسبی در محاسبه مؤلفه𝜉 با استفاده از تلفیق مدل EGM2008 و RTM حدود 6% و در محاسبه مؤلفه 𝜂 حدود 37% است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of vertical deflection derived from a combination of Global Geopotential Model and Digital Terrain Model in Iran

نویسندگان [English]

  • Roohollah Karimi 1
  • Ali Reza Azmoude Ardalan 2
  • Siavash Yousefi 3
1 Assistant Professor, Department of geodesy and surveying engineering, Tafresh University, Tafresh, Iran
2 Professor, Dept. of Geomatics, Center of Excellence in Geomatics Eng. and Disaster Prevention, Faculty of Eng, University of Tehran, Iran
3 M.Sc. graduate, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

Introduction
Components of verticaldeflection, i.e., North-South component  and East-West component ,are used for accurate determination of geoid or quasigeoid. Moreover, vertical deflection components area useful source for determination of variations in subsurface density and geophysical interpretations. Generally, there are two definitions for verticaldeflection. According to Helmert definition, vertical deflection at any given pointis the angle between the actualgravity vector (actual plumb line) and a line that is normal to the reference ellipsoid(a straight line perpendicular to the surface of reference ellipsoid). Another definition of vertical deflection is proposed by Molodensky. According this definition, vertical deflection at any given point is the angle between actualgravity vector and normal gravity vector (normal plumb line). Some relations have been introduced to convert Molodensky vertical deflection to Helmert vertical deflection. Helmert vertical deflection is estimated using astrogeodetic observations (combination of astronomical and geodetic observations).
Presently, global geopotential models (GGMs) have been expanded to the degree of2190, which is equivalenttoabout 5-min spatial resolution. Vertical deflectionat any point on the Earth can be calculated using the GGM. The resulting vertical deflection is consistent with Molodensky definition.Unfortunately, accuracy of GGMs is not sufficient for estimation of verticaldeflection.In other words, since GGMs are expanded up to a limited degree due to their resolution, omission error(or truncation error) occurs in computation of the earth’s various gravity field functionals, such as the geoidal height and verticaldeflection. Combining GGM with a digital terrain model (DTM) is a method used to reduce omission error.It should be noted that DTM has a higher spatial resolution as compared to GGM.In this method, the omitted signals of GGM can be modeled using residual terrain model (RTM) derived from subtracting high resolution DTM from a reference smooth surface. The reference smooth surface is obtained from eitherapplying average operator to DTM or expanding global topography into spherical harmonics. Fortunately, DTMs with spatial resolution of 3seconds or more,and reference smooth surface based on 2190 degree spherical harmonics are publicly available.
The present study seeks to assess vertical deflectionderived from a combination of GGM and DTM in Iran. Previously, Jekeli(1999) has studied EGM96 geopotential model with the aim of computingvertical deflection in the USA. Hirt(2010) and Hirt et al. (2010a) have assessed vertical deflection in Europe and the Alps using a combination of EGM2008 and RTM models.In Iran, GO_CONS_GCF_2_TIM_R4, a GOCE-only model, and EGM2008 geopotential model have been used toobtain vertical deflection and the results have been evaluated byKiamehr and Chavoshi-Nezhad(2014).
 
Materials & Methods
To implement the present study,a EGM2008 model with a spatial resolution of about 5-min is selected asGGM and a SRTM model with 3-sec spatial resolution is considered as DTM. To obtain RTM, DTM2006 model based on2190 degree spherical harmonicsis selected as the reference smooth surface.To compute the residual topography effect, prism method was used in an ellipsoidalmulti-cylindrical equal-area map projection system. First, we compute vertical deflectionusing EGM2008 model. It is also calculated using a combination of EGM2008 model and RTM(EGM2008/RTM method). In the next step, vertical deflection derived from the first method (EGM2008 model) and the second one (combination of EGM2008 model and RTM) are compared with vertical deflectionderived from astrogeodetic observations in 10 available Laplace stations in Iran.
 
Results & Discussion
Results indicate that there is a 1.2sec difference between North-South component of vertical deflection (i.e.) obtained from EGM2008 model and astrogeodetic observations.With RTM, this will reach 1 sec, which shows a 15% improvement. Moreover, there is a5.7secdifference between East-West component of vertical deflection () obtained from EGM2008 model and astrogeodetic observations, while this value will reach 5.6sec using RTM. Improvement in East-West component () is1.4%, which is smaller than the improvement of North-South component (). Based on the computations, we found that values of  and  in the Laplace stations canreach 17sec (RMS=7sec) and 15sec (RMS=8sec), respectively. Therefore, it is concluded that the relative error ofNorth-South component ()computation using EGM2008/RTM method is about 6% and the relative error ofEast-West component ()computation is about 37%.
 
Conclusion
The present research has studied the RTM effect on the improvement of GGM used for the determination of vertical deflectionin Iran. To performthe study, EGM2008 model with around 5-min spatial resolution was selected as GGM. RTM is also derived from subtracting the DTM2006 model (based on2190 degree spherical harmonics)from the 3-sec spatial resolutionSRTM model. Numerical findings indicate that a combination of RTM and GGM can improve the results of vertical deflectioncomputation, as compared to the results obtained from GGM-only approach. The improvement in North-South component of vertical deflection () is about15%and East-West component of the vertical deflection () undergoes about 1.4% improvement. In general, EGM2008 model and its combination with RTM have been more successful in the computation of  component as compared to computationin the geographical region of Iran. There is no clear explanation for this difference, but it can be due to errors in theastronomical or geodetic observations oflongitude in Laplace stations.

کلیدواژه‌ها [English]

  • Iran
  • Deflection of the vertical
  • Global Geopotential Model
  • Residual Terrain Model
  • EGM2008
  • SRTM
  • DTM2006
1. AllahTavakoli Y., Safari A.,   Ardalan A. and  Bahrodi A. (2015) Application of the RTM-technique to gravity reduction for tracking near-surface mass-density anomalies: A case study of salt diapirs in Iran. Studia Geophysica et Geodaetica, 59: 409-423.

2. Ardalan A.A., and Safari A. (2004) Ellipsoidal terrain correction based on multi-cylindrical equal-area map projection of the reference ellipsoid. Journal of Geodesy, 78: 114-123.

3. Bürki B., Müller A., and Kahle H-G. (2004) DIADEM: The New Digital Astronomical Deflection Measuring System for High-precision Measurements of Deflections of the Vertical at ETH Zurich. Electronic Proc. IAG GGSM2004 Meeting in Porto, Portugal. Published also in: CHGeoid 2003, Report 03-33 A (ed. U. Marti et al.), Bundesamt für Landestopographie (swisstopo), Wabern, Schweiz.

4. Claessens S.J., Featherstone W.E., and Anjasmara I.M. (2008) Is Australian data really validating EGM2008 or is EGM2008 just in/validating Australian data. In: Mertikas, S. (ed.) Gravity Geoid and Space Missions, Springer, Berlin Heidelberg New York.

5. Ďuríčková Z., and Janák J. (2016) RTM-based omission error corrections for global geopotential models: Case study in Central Europe. Studia Geophysica et Geodaetica, 60: 622-643.

6. Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., and Alsdorf D. (2007) The Shuttle Radar Topography Mission. Reviews of Geophysics 45, RG2004, doi:10.1029/2005RG000183.

7. Forsberg R., and Tscherning C. (1981) The use of height data in gravity field approximation by collocation. Journal of Geophysical Research 86:7843–7854.

8. Forsberg R. (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus, USA.

9. Forsberg R. (1994) Terrain Effects in Geoid Computations. International School for the Determination and Use of the Geoid. Lecture Notes, International Geoid School (IGS), Milan, Italy.

10. Förste Ch., Bruinsma S.L., Abrikosov O., Lemoine J.‐M., Schaller T., Götze H.‐J., Ebbing J., Marty J.C., Flechtner F., Balmino G., and Biancale R. (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. 5th GOCE User Workshop, Paris, 25.-28.11.2014.

11. Heiskanen W.A., and Moritz H. (1967) Physical Geodesy. W.H. Freeman and Company, San Francisco.

12. Gilardoni M., Reguzzoni M., and Sampietro D. (2016) GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60: 228-247.

13. Hirt C. (2004) Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung., Ph.D. Thesis. Wissen. Arb. der Fachrichtung Geodäsie und Geoinformatik an der Universität Hannover Nr. 253.

14. Hirt C. (2010) Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. Journal of Geodesy 84: 179-190.

15. Hirt C., Marti U., Bürki B., and Featherstone W.E. (2010a) Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data. Journal of Geophysical Research, 115, B10404, doi:10.1029/2009JB007057.

16. Hirt C., Featherstone W.E., and Marti U. (2010b) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. Journal of Geodesy, 84: 557-567.

17. Hirt, C., Bürki B., Somieski A., and Seeber G. (2010c) Modern determination of vertical deflections using digital zenith cameras, Journal of Surveyimg Engineering, 136: 1–12.

18. Hirt C. (2013) RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone. Marine Geodesy, 36: 1–20.

19. Hirt C., Bucha B., Yang M., and Kuhn M. (2019) A numerical study of residual terrain modelling (RTM) techniques and the harmonic correction using ultra-high-degree spectral gravity modelling. Journal of Geodesy, doi.org/10.1007/s00190-019-01261-x (published online).

20. Huang J., and V´eronneau M. (2009) Evaluation of the GRACE-based Global Gravity Models in Canada. Newton’s Bulletin No. 4, 66-72.

21. Jekeli C. (1999) An analysis of vertical defections derived from high-degree spherical harmonic models. Journal of Geodesy, 73: 10-22.

22. Jekeli C. (2013) Extent and resolution requirements for the residual terrain effect in gravity gradiometry. Geophysical Journal International, 195: 211–221.

23. Jarvis A., Reuter H.I., Nelson A., and Guevara E. (2008) Hole-filled SRTM for the globe Version 4. Available from the CGIAR-SXI SRTM 90m database: http://srtm.csi.cgiar.org.

24. Kiamehr R., and Chavoshi-NezhadA. (2014) Evaluation of the EGM2008 and GOCE global geoid models versus theLaplace points in Iran (in Persian). Iranian Journal of Geophysics, 8: 110-122.

25. Märdla S., Ågren J., Strykowski G., Oja T., Ellmann A., Forsberg R., Bilker-Koivula, M.,Omang O., Paršelinas E., and Liepinš I. (2017) From Discrete Gravity Survey Data to a High-resolution Gravity Field Representation in the Nordic-Baltic Region. Marine Geodesy, 40: 416-453.

26. Nagy D., Papp G., and Benedek J. (2000) The gravitational potential and its derivatives for the prism. Journal of Geodesy, 74: 552–560

27. Nagy D., Papp G., and Benedek J. (2002) Corrections to “The gravitational potential and its derivatives for the prism”. Journal of Geodesy, 76, 475

28. Pavlis N.K., Holmes S.A., Kenyon S.C., and Factor J.K. (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406, doi:10.1029/2011JB008916

29. Rexer M., Hirt C., Bucha B., and Holmes S. (2018) Solution to the spectral filter problem of residual terrain modelling (RTM). Journal of Geodesy, 92: 675-690

30. Safari A., and Ardalan A.A. (2007) New Cylindrical Equal Area and Conformal Map Projections of the Reference Ellipsoid for Local Applications. Survey Review, 39: 132-144

31. Sjöberg L.E. (2011) Quality Estimates in Geoid Computation by EGM08. Journal of Geodetic Science, 1: 361-366

32. Somieski A.E. (2008). Astrogeodetic Geoid and Isostatic Considerations in the North Aegean Sea, Greece, Diss. ETH No. 17790, ETH Zurich, Switzerland

33. Torge W. (2001) Geodesy, 3rd ed., de Gruyter, Berlin, New York