ارزیابی و مقایسه کارایی الگوریتم های بهینه سازی ازدحام ذرات و جستجوی گرانشی برای تفکیک کاربری های اراضی مشابه - مطالعه موردی: اراضی فضای سبز و شالیزار شمال ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران

2 استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران

10.22131/sepehr.2020.40474

چکیده

بکارگیری ویژگی‌‌های بهینه در الگوریتمهای مختلف طبقهبندی، بر دقت نتایج حاصل از طبقهبندی تأثیرگذار میباشد. هدف از پژوهش حاضر بررسی قابلیتهای تصاویر هایپریون و لندست و مقایسه کارایی الگوریتمهای بهینهسازی ازدحام ذرات و جستجوی گرانشی جهت تعیین ویژگیهای بهینه برای تفکیک اراضی فضای سبز و شالیزار میباشد. در این مطالعه از تصاویر ماهوارهای لندست، هایپریون و مجموعه دادههای واقعی مربوط به منطقهای در شمال ایران استفاده شده است. در این مطالعه کارایی الگوریتمهای بهینهسازی ازدحام ذرات و جستجوی گرانشی جهت تعیین ویژگیهای بهینه و قابلیت تصاویر لندست و هایپریون برای تفکیک اراضی فضای سبز و شالیزار با استفاده از مجموعهی دادههای واقعی مقایسه گردید. برای ارزیابی نتایج از پارامترهای دقت کاربر، دقت تولید کننده، دقت کلی و ضریب کاپا استفاده شده است. نتایج پژوهش بیانگر این است که دقت کلی تفکیک اراضی فضای سبز و شالیزار با تصویر هایپریون 15 درصد بالاتر از تصویر لندست میباشد. بکارگیری شاخصهای طیفی در فرایند طبقهبندی، سبب بهبود دقت تفکیک اراضی فضای سبز و شالیزار در هر دو داده لندست و هایپریون می گردد. همچنین استفاده از الگوریتم بهینهسازی برای تعیین ویژگیهای بهینه و استفاده از ویژگیهای بهینه در فرایند طبقهبندی سبب افزایش دقت تفکیک اراضی فضای سبز و شالیزار میگردد. با توجه به مقادیر دقت کلی، کارایی الگوریتم بهینهسازی جستجوی گرانشی برای تفکیک اراضی فضای سبز و شالیزار 2 درصد بهتر از الگوریتم ازدحام ذرات میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment and comparison of the efficiency of PSO and GSA algorithms for the separation of similar land uses: A case study of green spaces & rice fields in for thern Iran

نویسندگان [English]

  • Mohammad Karimi Firozjaei 1
  • Amir Sedighi 1
  • Najmeh Neisany Samany 2
1 Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran
2 Assistant Professor, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran
چکیده [English]

Introduction
Remote sensing data provide valuable information for the agricultural section and natural resources managers. Nowadays, performance management and estimation via using various methods such as classification and mapping have gained great significance. An example of such data is the mapping of crops cultivation and orchards at national and regional levels, which is one of the key tools in sustainable agricultural planning and management. These studies appear necessary especially in the field of strategic commodities such as rice and citrus which are among the most important food items for the Iranian people. The spatial information on agricultural lands in the field of agricultural planning and management can help the prevention of the spread of pests, management of the environmental stresses, crop performance estimation and vulnerability assessment in crop production. Field surveys and observations for crops mapping in the growing season in different years are very time-consuming, costly, and only suitable for small-scale studies. In contrast, over the past decades, remote sensing has been recognized as a suitable method for crops mapping for large areas in the shortest time and at low cost. Due to the climatic conditions of the areas in North of Iran, green spaces including vegetation and orchards, and rice fields are located near each other. At the time of the maximum growth of rice products, the spectral characteristics of these land covers are very similar. Therefore, the separation of these two land covers using satellite image classification process faces serious challenges. The aim of this study is to investigate the efficiency of the satellite images and the optimization algorithms for separating green spaces and rice fields from each other at the time of maximum growth. The present study differs from others in this field from two aspects; first, the study compares the capabilities of multispectral and hyperspectral satellite images with each other; additionally, it aims at comparing and evaluating the efficiency of the Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) so as to determine the optimal features for increasing the separation accuracy of green spaces and rice fields.
 
Materials and methodology
This research was carried out based on the two objectives of studying the capabilities of the Hyperion and Landsat images and comparing the efficiency of the PSO and GSA to determine optimal features for the separation of green spaces and rice fields. For this purpose, the two Landsat and Hyperion satellite images as well as ground data sets of the case study in North of Iran were employed. In the first step, preprocessing of the Hyperion and Landsat images was performed. In the second step, various features were extracted from the Hyperion and Landsat images using different spectral indices and transformations. In the third step, the Support Vector Machine (SVM) classifier was applied with two strategies, i.e. the usage of spectral bands and the usage of spectral bands as well as indices as the features in the classification process to extract green spaces and rice fields. In the fourth step, PSO and GSA were employed to extract optimal features from the Hyperion image to distinguish between green spaces and rice fields; then, classification was done with the extracted optimal features; and finally, the efficiency of PSO and GSA were compared to determine the optimal features for the separation of green spaces and rice fields using ground data sets.
 
Results and discussion
The results indicate that the use of Landsat image is not effective for the separation of rice fields and green spaces. In other words, due to the high spectral similarity of these land covers, a large percentage of pixels related to the two classes are mistakenly classified in another class. However, the accuracy of the producer and user relating to each class has increased by an average of 10 percent with the addition of spectral indices to the classification process.
Using Hyperion image is more effective than Landsat image for the separation of rice fields and green spaces. Moreover, the accuracy for the separation of rice fields and green spaces has increased with the simultaneous consideration of the bands and spectral indices in the classification process. It should be noted that one of the key factors in the efficiency evaluation process of the classification methods is the processing time. The results of using optimization algorithms for determining the optimal features indicate that out of the 150 spectral features (including 140 Hyperion image bands and 10 spectral indices and transformations), using PSO and GSA, only 25 and 31 optimal features were selected for the separation of green spaces and rice fields, respectively.The use of optimal features in the classification increases the accuracy for the separation of green spaces and rice fields more, compared to the use of all features in the classification. Additionally, GSA is superior to PSO when used for extracting optimal features for the separation of green spaces and rice fields. 
 
Conclusion
The results of this research indicate that the separation accuracy of green spaces and rice fields using Landsat image,is less than that of Hyperion image. With the addition of spectral indices to the classification process, the separation accuracy in both Landsat and Hyperion data increases. Moreover, using an optimization algorithm to determine the optimal features in the classification process will increase the separation accuracy of green spaces and rice fields. Given the overall accuracy values, the efficiency of GSA for separating green spaces and rice fields is higher than PSO.

کلیدواژه‌ها [English]

  • Classification
  • Optimal features
  • PSO
  • GSA
  • Landsat
  • Hyperion
1.   Arzani, H. and G. King (1997). “Application of remote sensing (Landsat TM data) for vegetation parameters measurement in western division of NSW.” Proceedings XVIII IGC 1997 Winnepeg, Manitoba.

2.   Awad, M. M. (2018). “Forest mapping: a comparison between hyperspectral and multispectral images and technologies.” Journal of Forestry Research 29(5): 1395-1405.

3.   Baghdadi, N., N. Boyer, P. Todoroff, M. El Hajj and A. Bégué (2009). “Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island.” Remote Sensing of Environment 113(8): 1724-1738.

4.   Banerjee, S., A. Bharadwaj, D. Gupta and V. Panchal (2012). “Remote sensing image classification using artificial bee colony algorithm.” International Journal of Computer Science and Informatics 2(3): 67-72.

5.   Beck, R. (2003). “EO-1 user guide v. 2.3.” Department of Geography University of Cincinnati.

6.   Berk, A., P. Conforti, R. Kennett, T. Perkins, F. Hawes and J. van den Bosch (2014). MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code. Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2014 6th Workshop on, IEEE.

7.   Cheng, G., J. Han, L. Guo, Z. Liu, S. Bu and J. Ren (2015). “Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images.” IEEE Transactions on Geoscience and Remote Sensing 53(8): 4238-4249.

8.   Coulter, L. L., D. A. Stow, Y.-H. Tsai, N. Ibanez, H.-c. Shih, A. Kerr, M. Benza, J. R. Weeks and F. Mensah (2016). “Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery.” Remote Sensing of Environment 184: 396-409.

9.   Couto, P. (2003). “Assessing the accuracy of spatial simulation models.” Ecological Modelling 167(1-2): 181-198.

10. Datt, B., T. R. McVicar, T. G. Van Niel, D. L. Jupp and J. S. Pearlman (2003). “Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes.” IEEE Transactions on Geoscience and Remote Sensing 41(6): 1246-1259.

11. Eberhart, R. and J. Kennedy (1995). A new optimizer using particle swarm theory. Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, IEEE.

12. Elatawneh, A., C. Kalaitzidis, G. P. Petropoulos and T. Schneider (2014). “Evaluation of diverse classification approaches for land use/cover mapping in a Mediterranean region utilizing Hyperion data.” International Journal of Digital Earth 7(3): 194-216.

13. FIORIO, P. R., J. A. M. DEMATTÊ and G. SPAROVEK (2000). «Cronology and environmental impact of land use on Ceveiro Microbasin in Piracicaba region, Brazil.” Pesquisa agropecuaria brasileira 35(4): 671-679.

14. Foody, G. M., M. E. Cutler, J. Mcmorrow, D. Pelz, H. Tangki, D. S. Boyd and I. Douglas (2001). “Mapping the biomass of Bornean tropical rain forest from remotely sensed data.” Global Ecology and Biogeography 10(4): 379-387.

15. Galvao, L. S., A. R. Formaggio and D. A. Tisot (2005). “Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data.” Remote Sensing of Environment 94(4): 523-534.

16. Galvão, L. S., A. R. Formaggio and D. A. Tisot (2006). “The influence of spectral resolution on discriminating Brazilian sugarcane varieties.” International Journal of Remote Sensing 27(4): 769-777.

17. Gao, B.-C. (1996). “NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space.” Remote sensing of environment 58(3): 257-266.

18. Geem, Z. W., J. H. Kim and G. V. Loganathan (2001). “A new heuristic optimization algorithm: harmony search.” simulation 76(2): 60-68.

19. Goodenough, D. G., A. Dyk, K. O. Niemann, J. S. Pearlman, H. Chen, T. Han, M. Murdoch and C. West (2003). “Processing Hyperion and ALI for forest classification.” IEEE transactions on geoscience and remote sensing 41(6): 1321-1331.

20. Green, A. A., M. Berman, P. Switzer and M. D. Craig (1988). “A transformation for ordering multispectral data in terms of image quality with implications for noise removal.” IEEE Transactions on geoscience and remote sensing 26(1): 65-74.

21. Hamzeh, S., A. A. Naseri, S. K. AlaviPanah, H. Bartholomeus and M. Herold (2016). “Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields.” International Journal of Applied Earth Observation and Geoinformation 52: 412-421.

22. Hamzeh, S., A. A. Naseri, S. K. Alavipanah, B. Mojaradi, H. M. Bartholomeus, J. G. Clevers and M. Behzad (2013). “Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices.” International Journal of Applied Earth Observation and Geoinformation 21: 282-290.

23. Han, T., D. Goodenough, A. Dyk and J. Love (2002). Detection and correction of abnormal pixels in Hyperion images. Geoscience and Remote Sensing Symposium, 2002. IGARSS’02. 2002 IEEE International, IEEE.

24. Huete, A. R., T. Miura and X. Gao (2003). “Land cover conversion and degradation analyses through coupled soil-plant biophysical parameters derived from hyperspectral EO-1 Hyperion.” IEEE Transactions on Geoscience and Remote Sensing 41(6): 1268-1276.

25. Johnson, R. M., R. P. Viator, J. C. Veremis, E. P. Richard Jr and P. V. Zimba (2008). “Discrimination of sugarcane varieties with pigment profiles and high resolution, hyperspectral leaf reflectance data.” Journal Association Sugar Cane Technologists 28: 63-75.

26. Joshi, N., M. Baumann, A. Ehammer, R. Fensholt, K. Grogan, P. Hostert, M. R. Jepsen, T. Kuemmerle, P. Meyfroidt and E. T. Mitchard (2016). “A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring.” Remote Sensing 8(1): 70.

27. Kennedy, J. and R. C. Eberhart (1997). A discrete binary version of the particle swarm algorithm. Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on, IEEE.

28. Li, Y. and Z. Kang (2016). A hyperspectral imaging technology based method for identifying the variety of mengding mountain tea. Software, Knowledge, Information Management & Applications (SKIMA), 2016 10th International Conference on, IEEE.

29. Liu, X., X. Li, L. Liu, J. He and B. Ai (2008). “An innovative method to classify remote-sensing images using ant colony optimization.” IEEE transactions on geoscience and remote sensing 46(12): 4198-4208.

30. Mann, D. and P. Joshi (2017). “Evaluation of Image Classification Algorithms on Hyperion and ASTER Data for Land Cover Classification.” Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 87(4): 855-865.

31. Masek, J., E. Vermote, N. Saleous, R. Wolfe, F. Hall, F. Huemmrich, F. Gao, J. Kutler and T. Lim (2012). “LEDAPS Landsat calibration, reflectance, atmospheric correction preprocessing code.” Model product. Available on-line [http://daac. ornl. gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA http://dx. doi. org/10.3334/ORNLDAAC/1080.

32. Mather, P. and B. Tso (2016). Classification methods for remotely sensed data, CRC press.

33. Matsushita, B., W. Yang, J. Chen, Y. Onda and G. Qiu (2007). “Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest.” Sensors 7(11): 2636-2651.

34. Mertens, K., L. Verbeke, E. Ducheyne and R. De Wulf (2003). “Using genetic algorithms in sub-pixel mapping.” International Journal of Remote Sensing 24(21): 4241-4247.

35. Nikolakopoulos, K. G. (2003). Use of vegetation indexes with ASTER VNIR data for burnt areas detection in Western Peloponnese, Greece. Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE International, IEEE.

36. Pervaiz, W., V. Uddin, S. A. Khan and J. A. Khan (2016). “Satellite-based land use mapping: comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery.” Journal of Applied Remote Sensing 10(2): 026004.

37. Pettorelli, N., J. O. Vik, A. Mysterud, J.-M. Gaillard, C. J. Tucker and N. C. Stenseth (2005). “Using the satellite-derived NDVI to assess ecological responses to environmental change.” Trends in ecology & evolution 20(9): 503-510.

38. Rashedi, E., H. Nezamabadi-Pour and S. Saryazdi (2009). “GSA: a gravitational search algorithm.” Information sciences 179(13): 2232-2248.

39. Roberts, D. A., P. E. Dennison, M. E. Gardner, Y. Hetzel, S. L. Ustin and C. T. Lee (2003). “Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer.” IEEE Transactions on Geoscience and Remote Sensing 41(6): 1297-1310.

40. Rudorff, B. F. T. and G. T. Batista (1990). “Yield estimation of sugarcane based on agrometeorological-spectral models.” Remote sensing of Environment 33(3): 183-192.

41. Schroeder, T. A., W. B. Cohen, C. Song, M. J. Canty and Z. Yang (2006). “Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon.” Remote sensing of environment 103(1): 16-26.

42. Tardin, A., G. Deassuncao and J. Soares (1992). “Preliminary-analysis of Tm Data for Coffee, Citrus and Sugarcane Discrimination in Furnas Region, Mg, Brazil.” Pesquisa Agropecuária Brasileira 27(9): 1355-1361.

43. Trelea, I. C. (2003). “The particle swarm optimization algorithm: convergence analysis and parameter selection.” Information processing letters 85(6): 317-325.

44. Tucker, C. J. (1979). “Red and photographic infrared linear combinations for monitoring vegetation.” Remote sensing of Environment 8(2): 127-150.

45. Vogelmann, J., B. Rock and D. Moss (1993). “Red edge spectral measurements from sugar maple leaves.» TitleREMOTE SENSING 14(8): 1563-1575.

46. Wang, L., D. Liu, H. Pu, D.-W. Sun, W. Gao and Z. Xiong (2015). “Use of hyperspectral imaging to discriminate the variety and quality of rice.” Food analytical methods 8(2): 515-523.

47. Weng, Q., M. K. Firozjaei, M. Kiavarz, S. K. Alavipanah and S. Hamzeh (2019). “Normalizing land surface temperature for environmental parameters in mountainous and urban areas of a cold semi-arid climate.” Science of The Total Environment 650: 515-529.

48. Weng, Q., M. K. Firozjaei, A. Sedighi, M. Kiavarz and S. K. Alavipanah (2019). “Statistical analysis of surface urban heat island intensity variations: A case study of Babol city, Iran.” GIScience & Remote Sensing 56(4): 576-604.

49. Wiegand, C., G. Anderson, S. Lingle and D. Escobar (1996). «Soil salinity effects on crop growth and yield-Illustration of an analysis and mapping methodology for sugarcane.” Journal of Plant Physiology 148(3-4): 418-424.

50. Yang, H., Q. Du and G. Chen (2012). “Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(2): 544-554.

51. Yang, X., Q. Zhou and M. Melville (1997). “Estimating local sugarcane evapotranspiration using Landsat TM image and a VITT concept.” International Journal of Remote Sensing 18(2): 453-459.

52. Yuan, Y., J. Lin and Q. Wang (2016). “Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization.” IEEE transactions on cybernetics 46(12): 2966-2977.

53. Zhang, X., F. Liu, Y. He and X. Li (2012). “Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds.” Sensors 12(12): 17234-17246.

54. Zhu, Z. and C. E. Woodcock (2014). “Continuous change detection and classification of land cover using all available Landsat data.” Remote sensing of Environment 144: 152-171.

55.          Zou, Q., L. Ni, T. Zhang and Q. Wang (2015). “Deep Learning Based Feature Selection for Remote Sensing Scene Classification.” IEEE Geosci. Remote Sensing Lett. 12(11): 2321-2325.