استفاده از مدل حاصل ضربی برای تصحیح داده های ماهانه بارش سنجش از دور دراقلیم های مختلف ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی گروه مهندسی آب، دانشگاه فردوسی مشهد

2 استاد گروه علوم و مهندسی آب- دانشکده کشاورزی- دانشگاه فردوسی مشهد

3 استادیارگروه آمار، دانشگاه فردوسی مشهد

10.22131/sepehr.2020.47877

چکیده

ارزیابی و واسنجی دادههای سنجش از دور به عنوان منبع جدید برآورد بهتر و دقیق تر بارش در مناطق مختلف امری ضروری است. بر همین اساس در پژوهش حاضر، داده های ماهانه بارش  15  ایستگاه سینوپتیک در  5  اقلیم ایران (خشک، نیمه خشک، مدیترانه ای، مرطوب و بسیارمرطوب) به عنوان مبنا در دوره زمانی  20  ساله  1998  تا  2017  انتخاب گردید. دادههای بارش ماهانه ماهواره ای (TMPA(3B43_V7 مورد ارزیابی قرار گرفته و با کمک مدل حاصل ضربی واسنجی شدند.  ارزیابی نتایج با کمک شاخص های R2،MBE،MAE وRSME انجام پذیرفت.  بر اساس نتایج مقادیر تصحیح نشده، شاخص R2از 0.6 برای ایستگاه آبعلی تا  0.89  برای ایستگاه کوهرنگ متغیر بود.  در مناطق خشک داده های ماهواره ای بیش برآورد و در مناطق مرطوب کم برآورد داشتند.  پس از اعمال تبدیل لگاریتمی و مدل حاصل ضربی بر دادهها، پارامتر ماهانه C جهت تصحیح داده های ماهواره ای برای اقلیم های مختلف به دست آمد.  پس از تصحیح، شاخص های ارزیابی به ویژه در معیار MBE  کاهش قابل ملاحظه ای یافت.  به طوری که مقادیر این خطا در پیکسل های متناظر ایستگاه های بم، شهرضا، بجنورد و اراک  ( با اقلیم های خشک و نیمه خشک )  به ترتیب به  0.3- ،  0.6،  0.3-  و  0.5-  میلی متر کاهش یافت و در ایستگاه نیشابور به صفر رسید.  درصد کاهش انحراف خطا در اقلیم های خشک، نیمهخشک، مدیترانهای، مرطوب و خیلی مرطوب به ترتیب  88.7،  95.3،  68.4،  38.4  و  63.9  درصد به دست آمد.  بر اساس نتایج، مدل تصحیح به ویژه در مناطق خشک قابلیت استفاده را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Applying multiplicative model to rectify monthly remotely sensed data of precipitation in different climates of Iran

نویسندگان [English]

  • Hadi Ghafourian 1
  • Seyed Hossein Sanaei Nejad 2
  • Mahdi Jabbari Nowghabi 3
1 Ph.D. Student., Department of water engineering, Ferdowsi University of Mashhad, Iran
2 Professor, Water Engineering, College of Agriculture, Ferdowsi University of Mashhad
3 Assistant Prof., Department of Statistics, Ferdowsi University of Mashhad.
چکیده [English]

Extended Abstract
Introduction
Due to the importance of precipitation in various aspects of human life, precipitation data are largely applicable in different fields of study. Therefore, accurate measurement of precipitation is considered to be crucialin various fields such as agriculture, water resources, and industrymanagement. Due to the problems related to generalization of point precipitation to regional precipitation, alternative methods have been proposed forthe measurement of this variable. In many cases, short reference period, inadequate density of stations and poor quality of data collected from precipitation measurement networks have challenged the analysis of this climate variable. In order to overcome these problems, it is necessary to identify alternative sources, evaluate and use them to estimate the amount of precipitation. The present study primarily seeks to evaluate precipitation data from the TMPA and provide calibration data for arid, semi-arid, Mediterranean, humid, and very humid regions of Iran on a monthly scale.
 Materials and Methods
In the present study, monthly precipitation data of 15 synoptic stations in 5 regions of Iran (arid, semi-arid, Mediterranean, humid and very humid) were selected as reference data and monthly precipitation data from the TMPA (3B43-v7) were corrected based on them. To ensure reliability of results and reduce errors,stations were selectedrandomly from 15 separate provinces with different topographic conditions. A 20-year reference period (1998-2017) was selected for the study. Collected satellite data have a monthly temporal resolution and a spatial resolution of 0.25 degrees covering 50th parallel south to 50th parallel north. Table 1 shows features of the selected stations and their corresponding pixels. Pre-processing included quality control, homogeneity test, and data accuracy test. Usinga long-term reference period of 20 years, different statistical criteria to evaluate satellite data and a correction relationindependent from ground data are among the advantages of this research. In this study, a more efficient method is used to determine errors and one of the most modern methods of calibration is also used. Followingthe application of log transformation and multiplicative model, monthly C parameter was calculated to rectify satellite data collected from different climates. Results were evaluated using R2 (Coefficient of Determination), MBE, MAE and RMSE.
 Results and Discussion
Findings indicated that the distribution of initial data obtained from TMPA satellite in a monthly scale is similar to the distribution of pattern obtained from ground data (due to a correlation of above 75% (R2>0.6)). Satellite data collected from arid areas are usually overestimated, while data collected from humid areas are generally underestimated. However, determination coefficients (R2) of different climates show a strong correlation between these two sources of data. The initial TMPA data have estimated the monthly precipitation of Bam, Piranshahr and Abali stations with the least amount of error. The highest level of errors were obtained from Marivan, Bandar Anzali, and Koohrang stations. In other words, the highest level of errors have occurred in the very humid region. Calibration of TMPA data collected from the 5 different climates indicated that correction of TMPA monthly data would improve valuesestimated from satellite images. Mean bias error (MBE) was reduced by 88.7, 95.3, 68.4, 38.4 and 63.9 percentin arid, semi-arid, Mediterranean, humid and very humid climates, respectively. Values of the correction parameter (C) in the arid climate indicate that a reduction factor has been applied to rectify satellite data collected in each month of the year. In the semi-arid climate, reduction factorswere obtained for each months of the year. A reduction factor is also required to rectify data collected in the warmest months of the year (June, July, and August) in the Mediterranean climate. Due to the low precipitation of these months, overestimation seems reasonable in these areas. A reduction factor should also be applied in the humid climate for 6 months of spring and summer.
Considering the precipitation rate in these areas, decreasing precipitation rate in these seasonsresults in overestimation and error. Due to the significant precipitationrate in the cold months of the year (autumn and winter), decreasing factorand underestimation are expected to occur. In the very humid climate, a reduction factor should be appliedin the warmest months of the year (June, July, and August). Due to the low precipitation rate of these months and higherfrequency of cloudy days, overestimation will be reasonablein these areas. Due to underestimationin the coldest months of the year (autumn and winter), coefficients higher than one must be corrected.
 Conclusion
Based on the results, the model used to correct precipitation in all 5 climates have reduced errors in precipitation measurement. However, this improvement was more obvious in arid and semi-arid climates. Sincea large part of Iran havean arid and semiarid climate, this calibration model is highly recommended. In addition, the final correction model does not depend on ground data and thus, applying the calibration modelto areas other than the specified stations will also be useful.

کلیدواژه‌ها [English]

  • Error Correction
  • Precipitation
  • Remote Sensing
  • TMPA data
1.بادپی،ا.، و کاویان ‌پور، م. ر. 1396. تصحیح خطا تخمین ‌های بارش ماهواره ‌های TRMM و GPM با استفاده از رادار هواشناسی. شانزدهمین کنفرانس هیدرولیک ایران. شهریور. اردبیل.
2.جباری نوقابی، م. 1390. داده‌ های پرت، مفهوم و کاربرد آن. نشریه ندا، 9(1): 1-16.
3.رضایی پژند، ح. 1380. کاربرد آمار و احتمال در منابع آب.  چاپ اول.  انتشارات سخن گستر.
4.زنگنه اینالو، م.،قهرمان، ب.، فریدحسینی، ع. 1398. ارزیابی دقت ماهواره TRMM در برآورد مقادیر بارش و رواناب حوضه رودخانه شاپور استان فارس.  نشریه آبیاری و زهکشی ایران. 13(1): 203-216.
5.صفوی گردینی، م.، دلبری، م.،امیری، م.،پیری، ج. واسنجی داده ‌های باران سری 3B43 ماهواره TRMM در استان هرمزگان.  نشریه علمی پژوهشی مهندسی آبیاری و آب ایران. 9(3): 99-112.
6.عرفانیان، م.،کاظم‌پور، س.، حیدری، ح. 1395. واسنجی داده ‌های باران سری B42 و B43 ماهواره TRMM در زون‌ های اقلیمی ایران.  پژوهش ‌های جغرافیای طبیعی.  48 (2): 303-287.
7.علیزاده، ا. 1386. اصول هیدرولوژی کاربردی.  چاپ بیست و سوم. انتشارات دانشگاه امام رضا (ع).  ویرایش هفتم. مشهد.
8.   Alavipanah, S.K. 2017. Principles of Modern Remote Sensing and Interpretation of Satellite Images and Arial Photos.Tehran University Pub. Tehran. 800p.
9.   Chen, S., Hong, H., J. Gourley, J., Huffman, J.G., Tian, Y., Cao, Q., Yong, B., Kirstetter, P., Hu, J., Hardy, J., Li, Z., Khan, S., Xue, X. 2013. Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States. Water Resources Research. 49. 8174-8186. https://doi.org/10.1002/2012WR012795.
10. Condom, T., P. Rau, and J. C. Espinoza, 2011: Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol.Processes, 25, 1924–1933, doi:10.1002/hyp.7949.
11. Dickey, D., Fuller, W. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a): 427-431. doi:10.1080/01621459.1979. 10482531
12. Ghafourian, H., SanaeiNejad, S.H., and Davary, K. 2014. Comparing and Assessment of TRMM Data and Ground Based Measurements Data for Drought Monitoring. Journal of Middle East Applied Science and Technology (JMEAST), 15(3): 415-419.
13. Habib, E., Krajewski, W.F., Ciach, G.J., 2001. Estimation of rainfall interstation correlation. J. HydrometeorAol. 2 (6). https://doi.org/10.1175/1525-7541(2001)0022.0.CO;2.
14. Habib, E., Larson, B.F., Graschel, J., 2009. Validation of NEXRAD multisensory precipitation estimates using an experimental dense rain gauge network in south Louisiana. J. Hydrol. 373 (3–4), 463–478. http://dx.doi.org/10.1016/j.jhydrol.2009.05.010.
15. Hashemi, H., Nordin, M., Lakshmi, V., Huffman, G., Knight, R., 2017. Bias Correction of Long-Term Satellite Monthly Precipitation Product (TRMM 3B43) over the Conterminous United States. J. HYDROMETEOROL. 18(9). 2491-2509. doi: 10.1175/JHM-D-17-0025.1.
16. Huffman, G.J. The Transition in Multi-Satellite Products from TRMM to GPM (TMPA to IMERG).NASA Goddard Space Flight Center and Science Systems and Applications.27th august.
17. Iranian Meteorological Organization. 2018. Available at http://irimo.ir/far/wd/2703.html. (visited 15 May 2018).
18. Islam, M. N., and H. Uyeda, 2007: Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sens. Environ., 108, 264–276, doi:10.1016/j.rse.2006.11.011.
19. Javanmard, S., A. Yatagai, M. Nodzu, J. BodaghJamali, and H. Kawamoto. 2010. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_ 3B42 over Iran. Adv. Geosci., 25, 119–125, doi:10.5194/adgeo-25-119-2010.
20. National Aeronautics and Space Administration (NASA). 2001. TRMM Data Users Handbook, February. 226p.
21. National Aeronautics and Space Administration (NASA). 2018. Homepage of Rainfall Archives, https://disc2.gesdisc.eosdis.nasa.gov/opendap/TRMM_L3/TRMM_3B43.7/contents.html Visited: 2018/04/10.
22. Rahimi, J., Ebrahimpour, M. and Khalili, A. 2013. Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Alied Climatology. 112(3–4): 409–418.
23. Sorooshian, S., Hsu, K., Gao, X., Gupta, H. V., Imam, B., and Braithwaite, D. 2000. Evaluation of PERSIANN system satellite based estimates of tropical rainfall, B. Am. Meteor. Soc., 81, 2035–2046. https://doi.org/10.1175/1520-0477(2000)0812.3.CO;2
24. Sorooshian, S., X. Gao, K. Hsu, R. A. Maddox, Y. Hong, H. V. Gupta, B. Imam, 2002. Diurnal Variability of Tropical Rainfall Retrieved from Combined GOES and TRMM Satellite Information. J. Climate, 15, 983–1001. https://doi.org/10.1175/1520-0442(2002)0152.0.CO;2.
25. Tang, L., Tian, Y., Yan, F., Habib, E., 2015. An improved procedure for the validation of satellite-based precipitation estimates. J.Atmos. Res. Volume 163, 61-73. http://dx.doi.org/10.1016/j.atmosres.2014.12.016.
26. Tarnavsky, E. Mulligan, M. and Husak, G. 2012. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments.  Hydrological Sciences Journal. 57(2):248-264. DOI: 10.1080/02626667.2011.637498.
27. Tian, Y., Peters-Lidard, C.D., Eylander, J.B., Joyce, R.J., Huffman, G.J., Adler, R.F., Hsu, K., Turk, F.J., Garcia, M., and Zeng, J., 2009. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res. 114 (D24), 1–15. http://dx.doi.org/10.1029/2009JD011949.
28. Tian, Y., Huffman, G.J., Adler, R.F., Tang, L., Sapiano, M., Maggioni, V., Wu, H., 2013. Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett. 40 (10), 2060–2065. http://dx.doi.org/10.1002/grl.50320.
29.          Vernimmen, R.E., Hooijer, A. Mamenun, A. and Aldrian, E. 2012. Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrology Earth Syst. Sci. , 8. 5969–5997. doi: 10.5194/hess-16-133-2012.drought monitoring in Indonesia. Hydrology Earth Syst. Sci. , 8. 5969–5997. doi: 10.5194/hess-16-133-2012.