بررسی روند تغییرات توپوگرافی دینامیکی تراز آب دریای خزر و اثر آن بر روی تغییرات خط ساحلی ایران با استفاده از داده های ارتفاع سنجی ماهواره ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم دریایی، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، ایران

2 دانشجوی دکتری، گروه علوم دریایی، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران

3 استاد گروه فیزیک فضا، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

4 دانشیار دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران

10.22131/sepehr.2020.47882

چکیده

دریای خزر بزرگترین دریاچه جهان است و ساحل دریای خزر ایران با طول حدود  900 کیلومتر، در حاشیه جنوبی آن واقع شده است.  در این تحقیق داده های آنومالی تراز سطح دریا، سطح ژئویید و سطح متوسط دریا برای مدت  20  سال طی سال های  1993  تا  2012، به منظور بررسی روند تغییرات خط ساحلی و سطح آب دریای خزر مورد بررسی قرار گرفته شده است.  برای بدست آوردن داده های آنومالی تراز سطح دریا از مجموعه داده های ارتفاع سنجی آویسو، به منظور یافتن ژئویید از مدل ژئوپتانسیل گوس و برای دست یابی به سطح متوسط دریا از مجموعه داده های MSS_CNES.CLS15   با قدرت تفکیک 0.25 در جه استفاده شده است.  پس از آن با محاسبه توپوگرافی دینامیکی متوسط، توپوگرافی دینامیکی مطلق و سری زمانی تراز دریا در طی سال های مورد نظر، نسبت به شناسایی تغییرات تراز دریای خزر در این سال ها و پیرو آن بررسی تغییرات خط ساحلی در همان زمان ها اقدام گردید.  بررسی مقاطع تغییرات تراز دریا نشانگر تغییرات غیر یکنواخت و نامنظم بوده و در دوره هایی روند کاهشی و در دوره هایی روند افزایشی را مشاهده می نماییم، اما روند تغییرات بصورت کلی منفی و میزان آن به طور متوسط  32  میلی متر در سال می باشد.  دامنه تغییرات مقدار بالاترین و پایین ترین تراز دریا در این  20  سال،  1.287-  متر می باشد.  از پیامدهای ناشی از تغییرات منفی تر از دریا، می توان به فرایند پسروی خزر اشاره نمود که از سال ۱۹۹۵ میلادی آغاز شده و تاکنون ادامه دارد و ماحصل آن خشک شدن بیش از  10000  هکتار از سطح دریا در خلیج گرگان می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating dynamic topography variations of the Caspian Sea and their impact on Iranian Shoreline changes using satellite altimetry data

نویسندگان [English]

  • Mojtaba Ezam 1
  • Hamid Bayat Barooni 2
  • Abbasali Aliakbri Bidokhti 3
  • Masoud Torabi Azad 4
1 Assistant Professor. Department of marine science and technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Ph.D. Candidate. Department of marine science and technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Professor.Institude of geophysics, University of Tehran, Tehran. Iran
4 Associate Professor. Department of marine science and technology, Islamic Azad University, Tehran North Branch, Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
The Caspian Seaclassed as the world’s largest lake, lies between Europe and South Western Asia (between 45.43°to 54.20°longitude east and 36.33°to 47.07°latitude north). The Caspian Sea level has changed widely over time. These changes have occurred gradually and incrementally leading to landward and seaward migration of the coastline. Therefore, it is very important to study and predict futurechanges of the Caspian Seacoastline. Today, experts in atmospheric and marine physics from all around the world consider the Caspian Sea as a natural dynamic model of oscillatory processes in watersurface.High annual rate of water level changeshas made oscillatory processes of this lake different from those of oceans. With the advent of satellite altimetry in 1973, highly accuratemonitoring of sea level has been made possible. The present study seeks to investigate the trend of dynamic topography changes in the Caspian Sea and determine the effects of changes in thesea level on the southern coastline.
 Methodology
Various sets of satellite data have been used in the present study. Long-term average ofglobal sea level data was obtained from MSS_CNES.CLS15. Covering a period of 20 years (1993 to 2012),these datasets are produced based on information received from different satellitealtimeters. Mean sea level is calculated foreach point of the network created atthe Caspian Sea (with a distance of 0.25°). The correlation between altimetry data and sea level changes is calculated using gravity changes. Investigating these changes leads us to equipotentialgeomagnetic surfaces called geoid. Geoid is an equilibrium surface of the Earth’s gravitational field showingapproximately the average leveloffree water. Mean sea level does not coincide with geoid and theirdifference at any given point is called absolute dynamic topography. In this study, GOCE model was used to calculate geoid value at every point of the network created at 1′distance from the Caspian Sea. Aviso Altimetry dataset was used to obtain sea level anomaly data. Mean sea level was obtained by adding dynamic topography mean to geoid height.In order to obtain average dynamic sea topography,MDT values were calculated for all the points created in the Caspian Sea. Afterwards, sea level anomaly was added to the mean dynamic sea topography to obtain absolute dynamic topography. Daily SLA data of the Caspian Sea were extracted with a resolution of 0.25° from AVISO and CNES.CLS15 SLA ultrasound satellites and interpolated at the specific location created on the Caspian Seanetwork with a resolutionof 1′.Aabsolute dynamic topography were calculated on a daily basis. These calculations were repeated for a 20 year period (7305 days) from 1993 to 2012 using MATLAB and in this way, a complete database including the Caspian Sea surface topographic datawas obtained for this period.
 Result
Following the calculation of the mean ADT data obtained fromall over the Caspian Sea, time series of daily Sea Level Fluctuations were extracted. These time series indicated that despite the positive trend of the Caspian Sea water level changes in both 1993-1995 and 2000-2005 periods, the overall trend of water level changes over the 20-year period is negative. Moreover, examining sea level changes over this 20-year period shows thatthe highest altitude (-25.914m) has occurred on June 1st, 1995, while the lowest altitude (-27.20) has occurred on November 26th, 2012. In addition, March 20th, 2002 and June 29th, 2005 have experienced two abrupt changes  ​​of -26.843m and -26.26m in the time series. In this time series, an upward trend is observed until June 1st, 1995, while a decreasing trend of 93 cmis observed from March 20th, 2002 over a period of approximately 7 years. Between March 20th, 2002 to June 29th, 2005 (a period of approximately 3 years), we observe a decreasing trend of 61 cm. Over a 7-year period (until late 2012), we also observe a 97cm decreasing trend. Altimetry data received from three stations located in the Caspian Sea are used to verify the results obtained from the above mentioned method. Examination of these values and comparing them with the values obtained from the method used in the study confirms the resulting trend. In orderto investigate the shoreline changes caused by changesin the Caspian Sea water level,the southern shoreline of the Sea is mapped based on the obtained trend.Days with the highest and lowest sea level over the 20-year study period were extracted from satellite images. Mapping and overlayingthe coastlines based on the information related to these two time series, changes have been observedthroughthe Caspian coastlines. However, these changes are more significant in the South Eastern Gorgan Bay (Miankale) due to the smaller slope of the South Eastern Caspian Sea compared to other areas of the Sea.
 Conclusion
Investigating changes of the Caspian Sea level shows anegativetrend of changes, with a -1.287 m difference between thehighest and lowest altitudes. Of course, the trend has not always been negative over these years. For an instance, a positive trend was observed from 1993 to1995 and from 2000 to 2005. Results indicate that the Caspian Sea dynamics of water level fluctuations changes rapidly and long-term prediction of the Caspian Sea water level cannot be very accurate. However, it can be concluded that the Caspian water level changes will continue its decreasing trend in the future. This negative trend of sea level changes has resulted in the seaward migration of the Caspian coastline, which has began in 1995 and still is present today. This has resulted in drying up of more than 12850 hectares of the GorganGulf.

کلیدواژه‌ها [English]

  • Sea Level Anomalies
  • Mean sea level
  • The Caspian Sea
  • Dynamic topography
  • Geoid
1.آزموده اردلان، ع.، و عرب صاحبی , ر. (1395). تعیین میدان پتانسیل ثقل محلی در دریا با استفاده از مشاهدات ارتفاع سنجی ماهواره ‌ای مطالعه خاص  : تعیین میدان ثقل در جزیره قشم، نشریه علمی پژوهشی دانشکده فنی دانشگاه تهران، دوره سی  ونهم، شماره 5، 633-644.
2. دریاباری، سیدجمال الدین. (1388). مدیریت سواحل دریای مازندران با تأکید بر نوسانات آب دریا، نشریه علمی پژوهشی نگرش ‌های نو در جغرافیای انسانی، دوره دوم، شماره 1، 111-124.
3. صفری، ع.، شریفی، م.، و زارعی,  ص. (1393). ارزیابی روش ‌های محاسبه آنومالی جاذبی د ردریا با استفاده از مشاهدات ارتفاع سنجی ماهواره ‌ای در دریای عمان، نشریه علمی مهندسی نقشه برداری و اطلاعات مکانی، دوره پنجم، شماره 2، 19-26.
4.عطایی، س.، عجمی، م.، لشته نشایی ا.، و یعصوبی , ح . (1395). تأثیر نوسانات تراز آب دریا بر تغییرات خطوط ساحلی دریای خزر، نشریه علمی پژوهشی مهندسی دریا، سال دوازدهم، شماره  24، 103-113.
5.غلامی، م.، و عباسی , م . (1394).  تغییر اقلیم دریای خزر، پنجمین کنفرانس منطقه‌ای تغییر اقلیم، تهران، سازمان هواشناسی، https://www.civilica.com/Paper-RCCC05-RCCC05_125.html
6.کردوانی، پ.، یوسفی روشن، م.، و مهدوی,  م. (1392). مخاطرات ژئومورفولوژیک ناشی از نوسان آب دریای خزر( مطالعه موردی:  بابلسر تا چالوس )، نشریه علمی پژوهشی اکوسیستم‌ های ایران، دوره چهارم، شماره  1، 115-130.
7.لاری، ک.، وابره دری , م . (1391). تلفیق T/PوJason-1 برای تعیین توپوگرافی سطح دریا در خلیج فارس و دریای عمان، نشریه علمی پژوهشی علوم و فنون دریایی، دوره یازدهم، شماره  3، 34-44.
8.لرستانی، ق. (1394). پیش بینی مقدار تغییرات سالانه خط ساحلی دریای خزر( محدوده دلتای رودخانه ‌ای گرگان رود)، نشریه علمی پژوهشی پژوهش ‌های جغرافیایی، دوره چهل و هفتم، شماره  2، 241-254.
9.Anzenhofer, M., Shum, C. K., &Rentsh, M. (1999). Coastal altimetry and applications.Ohio State University.Division of Geodetic Science. Report No.464.
10. Arpe, K., Leroy, S. A. G., Wetterhall, F., Khan, V., Hagemann, S., &Lahijani, H. (2014). Prediction of the Caspian Sea level using ECMWF seasonal forecasts and reanalysis. Theoretical and applied climatology, 117(1-2), 41-60.‏
11. Arpe, K., & Leroy, S. A. (2007). The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled. Quaternary international, 173, 144-152.‏
12. Barbosa, S. (2006). Sea level change in the North Atlantic from tide gauges and satellite altimetry (Doctoral dissertation, PhD Thesis (submitted), University of Porto).
13. Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J. F., &Safarov, E. S. (2017). Longterm Caspian Sea level change. Geophysical Research Letters, 44(13), 6993-7001.
14.Erol, B., Işık, M. S., &Erol, S. (2020). An Assessment of the GOCE High-Level Processing Facility (HPF) Released Global Geopotential Models with Regional Test Results in Turkey. Remote Sensing, 12(3), 586.
15. Ginzburg, A.I., &Kostyanoy, A.G. (2018). Trends in the hydrometeorological parameters of the Caspian Sea in the modern period (1990s – 2017). In The collection of abstracts of the sixteenth All-Russian open conference “Modern problems of remote sensing of the Earth from space,PP. 254-254.
16. Gunduz, M., &Özsoy, E. (2014). Modelling seasonal circulation and thermohaline structure of the Caspian Sea. Ocean Science, 10(3), 459-471.‏
17. Ibrayev, R. A., Özsoy, E., Schrum, C., & Sur, H. I. (2010). Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Science, 6(1).
18. Janusz-Pawletta, B. (2015). Protection of the Marine Environment of the Caspian Sea.In The Legal Status of the Caspian Sea (pp. 117-163). Springer, Berlin, Heidelberg.‏
19. Kakroodi, A. A., Kroonenberg, S. B., Hoogendoorn, R. M., Khani, H. M., Yamani, M., Ghassemi, M. R., &Lahijani, H. A. K. (2012). Rapid Holocene sea-level changes along the Iranian Caspian coast. Quaternary International, 263, 93-103.‏
20. Klige, R. K., &Myagkov, M. S. (1992). Changes in the water regime of the Caspian Sea. Geojournal, 27(3), 299-307.‏
21. Kosarev, A. N. (2005). Physico-geographical conditions of the Caspian Sea. In The Caspian Sea Environment (pp. 5-31). Springer, Berlin, Heidelberg.‏
22. Lebedev, S. A. (2016, May). Investigation seasonal and interannual variability of the Caspian Sea dynamics based on satellite altimetry data. In Proceedings of Living Planet Symposium, Prague, Czech Republic from (pp. 9-13).‏
23. Lebedev, S. A., &Kostianoy, A. G. (2005). Satellite altimetry of the Caspian Sea. Sea, Moscow, 366.
24. Mamaev, V., Gugele, B., Strobel, B., Taylor, P., Ritter, M., &Jaoshvili, S. (2002). The Caspian Sea. European Environment Agency. Available at: http://www. eea. europa. eu/publicatio ns/report_2002_0524_154909/region al-seas-aroundeurope/CaspianSea. pdf.
25. Markandya, A. (2004). Gains of regional cooperation: Environmental problems and solutions (No. 80). ZEF Discussion Papers on Development Policy.‏
26. Markandya, A., &Auty, R. M. (2005). 10 Environmental problems and solutions in the Caspian and Aral Basins. Energy, Wealth and Governance in the Caucasus and Central Asia: Lessons not learned, 177.
 
27. Nerem, R. S., Chambers, D. P., Choe, C., &Mitchum, G. T. (2010). Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy, 33(S1), 435-446.
28. Rechakov, G.L .(1997). Hollocene Oscillation of the Caspian Sea, and Forecast Bassed on the Caspian, Sea and Forecast Based on Paleogeographical Reconstructions. Quaternary International, Vo1. 41-42, PP. 167-172.
29. Renssen, H., Lougheed, B. C., Aerts, J. C. J. H., De Moel, H., Ward, P. J., &Kwadijk, J. C. J. (2007). Simulating long-term Caspian Sea level changes: the impact of Holocene and future climate conditions. Earth and Planetary Science Letters, 261(3-4), 685-693.‏
30. Rio, M. H., & Hernandez, F. (2004). A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. Journal of Geophysical Research: Oceans, 109(C12).‏
31. Rodionov, S. (2012). Global and regional climate interaction: the Caspian Sea experience (Vol. 11). Springer Science & Business Media.
32. Rucevska, I., &Rekacewicz, P. (2006). Vital Caspian Graphics: Challenges beyond Caviar. UNEP/Earthprint.
33. Safari, A. A., Kalantarioun, S., &Amini, H. (2015). An approach to the spectral analysis of the Jason-2 satellite altimetry observations based on stationary time series Case study: spectral analysis of instantaneous sea level of the Caspian Sea. Journal of Geomatics Science and Technology, 5(1), 271-285.
34. Szűcs, E. (2012). Validation of GOCE time-wise gravity field models using GPS-levelling, gravity, vertical deflections and gravity gradient measurements in Hungary. PeriodicaPolytechnica Civil Engineering, 56(1), 3-11.
35. Thieler, E.R., Brill, A.L., Cleary, W.J.,  Hobbs, C.H., Gammisch, R., 1995. Geology of the Wrightsville Beach, North Carolina shoreface: Implications for the concept of shoreface profile of equilibrium. Marine Geology, 126(1-4), 271-287.‏
36. Turuncoglu, U. U., Elguindi, N., Giorgi, F., Fournier, N., & Giuliani, G. (2013). Development and validation of a regional coupled atmosphere lake model for the Caspian Sea Basin. Climate dynamics, 41(7-8), 1731-1748.‏
37. Vanicek, P., &Krakiwsky, E. J. (2015). Geodesy: the concepts. Elsevier.
38. Yi, W., &Rummel, R. (2014). A comparison of GOCE gravitational models with EGM2008. Journal of Geodynamics, 73, 14-22.