مکان یابی برای اسکان موقت پس از وقوع زمین لرزه تحت شرایط عدم قطعیت با استفاده از منطق فازی کلاسیک و منطق فازی شهودی - مطالعه موردی: منطقه دو شهرداری تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد سامانه اطلاعات مکانی، گروه GIS، دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشیار، گروه GIS، دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی

10.22131/sepehr.2020.47884

چکیده

زمین لرزه یکی از پر تکرار ترین سوانح طبیعی در دنیا بوده که سالیانه منجر به خسارات مالی و جانی فراوانی می شود.  یکی از مهمترین موارد مرتبط با کاهش بحران ناشی از زمین لرزه چه در مرحله برنامه ریزی و چه بعد از رخداد آن در مرحله امداد، یافت مکان های مناسب برای اسکان موقت مردم می باشد.  مکان یابی بویژه در شرایط بحران همواره با عناصر عدم قطعیت و نایقینی همراه است.  از اینرو روش های قطعی و کلاسیک بدون دخالت عناصر نایقینی بطور معمول به نتایج قابل قبولی منتج نمی شوند.  با وجود آنکه استفاده از روش های مبتنی بر منطق و نظریه مجموعه های فازی یک روش مناسب و متداول برای مدل سازی های نایقینی بوده، اما این مدل دارای کاستی هایی نیز هست.  یکی از کاستی های آن تعیین تابع عضویت قطعی برای هر پارامتر مورد استفاده است.  از طرف دیگر نظریه فازی متداول امکان توصیف متغیرهای زبانی ناشی از شک، دودلی و وجود قراین و شواهد مختلف و مزاحم را ندارد.  مهم ترین مشکل برای استفاده از این روش زمانی نمود پیدا می کند که با کمبود داده مرتبط مواجه باشیم.  ما در مقاله حاضر از نظریه فازی شهودی برای رفع مشکلات یاد شده بهره جسته ایم.  روش  و مدل پیشنهادی در منطقه دو تهران پیاده سازی شد.  با توجه به نتایج اخذ شده می توان نتیجه گرفت روش پیشنهادی بویژه در شرایط عدم وجود داده مناسب، کافی و مرتبط و همچنین وجود متغیرهای مشکوک عملکرد بهتری نسبت به روش های متداول دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Site selection for temporary housing following earthquake under conditions of uncertainty using classical Fuzzy Logic and Intuitionistic Fuzzy Logic - Case study: District 2 of Tehran Municipality

نویسندگان [English]

  • Qassem Safari 1
  • Mohammad Reza Malek 2
1 M.Sc. student, Department of GIS, Faculty of geodesy and geomaticseng., K. N. Toosi University of Technology
2 Associate professor, Department of GIS, Faculty of geodesy and geomaticseng., K. N. Toosi University of Technology
چکیده [English]

Extended Abstract
Introduction
 Earthquake is one of the most frequent natural hazardsannually leading to numerous human and economic losses. Both in the planning stage and after the earthquake occurrence in the relief phase,findingappropriate sites for temporary housing is considered to be one of the most important issues in reduction of damages caused by earthquake. Temporary housing, especially in a crisis situation is always accompanied by elements of uncertainty. Hence, definitive and classical approaches normally do not lead to acceptable results without involving elements of uncertainty. Although using methods based on fuzzy logic and fuzzy set theory are conventional and appropriate for uncertainty modeling, these methods also have their own disadvantages. For an instance, they require a certain and definitive membership function for each parameter. Moreover,fuzzy theory cannot describe verbal variables related to doubt and hesitation.
Temporary housing is always accompanied byuncertainty.Thus, fuzzy theory cannot lead to reliable results in this regard. However, in case sufficient information is not obtained using fuzzy theory, intuitionistic fuzzy logic isconsidered to be an appropriate solution for this problem and uncertaintymodeling. Despite various applications of intuitionistic fuzzy logic in uncertainty modeling, few researches have focused on this method.
 Materials & Methods
Designing a qualitative model based on human knowledge requires a rule-based inference system, which is called an Expert System. This system consists of several parts. In the knowledge-based part, data and a set of rules, which are based on expert knowledgearesavedin the form of logical sentences. The input of this system is a set of numbers fuzzified in the inference engine by a set of fuzzy rules. Then,defuzzification is performed to map the fuzzy set and reach a certain point. In other words, the outputs must be readable and easy for the users.
The present study takes advantage of fuzzy and intuitionistic fuzzy approaches todetermine optimal sites for temporary housing. Furthermore, determinant factors of danger and safety followinganearthquakeare used to identify safe places for sheltering in such situations. The present study has applied layers of faults, hospitals, emergency and medical centers, fire stations, parks and green spaces, and roads as determinant factors. New spatial layers were produced for each ofthe aforementioned layers using distance and other similar functions. Then, trapezoidal functionwas used to determine membership and non-membership function of each layer in both fuzzy and intuitionistic fuzzy methods. Membership functions obtained from these methods are different in that they assign different membership values to the pixels surrounding the layer. Following the definition of membership and non-membership functions for each layer in both methods, temporary accommodation maps were obtained using the classical fuzzy as well as intuitionistic fuzzy methods.
 Results and Discussion
The results obtained from these two methods were not identical. The main reason for this difference is that they treat data uncertainty differently. Furthermore, the results of membership and non-membership functions inintuitionistic fuzzy are not complementary. This provides us with a powerful tool for interpretation and, of course, decision making about the study area. As the first case, membership and non-membership degreesequal zero and one implying that the membership degree equals one and the non-membership degree equalszero. This occurs when the method identifies the area as quite appropriate for temporary housing after the earthquake. In this case,results are determinative, and data can be used in the area. In the second case, membership and non-membership degreesare low, which occurs in areas lacking enough information. It implies that more information is neededin such areas for decision making. The third condition takes place when both membership and non-membership degrees equal 0.5. In such a case,it can be conclude that either the stated variable belongs to the area with a membership degree of 0.5, or the variable doesn’t belong to the area with a non-membership degree of 0.5. In the fourth condition, the membership degree is high and the non-membership degree is low. In this case, the results can be trusted and used in decision-making. The fifth condition is in contrast with the fourth case. It occurs when the non-membership degree is high and membership degree is low. Under this condition, it can be concluded that the results are not reliable.
 Conclusion
The proposed method and model were implemented in the second district of Tehran. According to the results, it can be concluded that the proposed approachperforms better than theclassical fuzzy approach, especially in the presence ofuncertainvariablesand lack of adequate data.

کلیدواژه‌ها [English]

  • Fuzzy logic
  • Intuitionistic Fuzzy
  • Disaster Management
  • Temporary housing
1.آقامحمدی، حسین (1379). طراحی و پیاده ‌سازی یک سیستم اطلاعات مکانی، برای کاهش اثرات بحران زلزله، پایان ‌نامه کارشناسی ارشد، گروه سیستم اطلاعات مکانی، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.
2.پیام راد، وفائی ‌نژاد. (2015). کمک به مدیریت بحران زلزله با مکان ‌یابی مراکز اسکان موقت با استفاده از یک سیستم حامی تصمیم ‌گیری GIS مبنا (مطالعه موردی:  منطقه 8 شهرداری اصفهان). نشریه علمی پژوهشی علوم و فنون نقشه برداری,  5(2), 231-246.
3.سبزعلی یمقانی,  ملک. (2015). توسعه یک الگوریتم بهترین مسیر در شرایط نایقینی و کمبود داده مبتنی بر نظریه فازی شهودی.  نشریه علمی پژوهشی علوم و فنون نقشه برداری,  5(1), 203-213.‎
4.کریمی کرد آبادی، م.، نجفی،ا. (2015). ارزیابی خطر زلزله با استفاده مدل ترکیبی AHP-FUZZY درامنیت شهری (مطالعه موردی:  منطقه یک کلان ‌شهر تهران). فصل نامه علمی - پژوهشی پژوهش و برنامه ‌ریزی شهری،  6(20)، 17-34.‎
5.نوجوان، امیدوار،  صالحی؛ مهدی، بابک، اسماعیل؛ مکان ‌یابی اسکان موقت با استفاده از الگوریتم ‌های فازی؛ مطالعه موردی:  منطقه یک شهرداری تهران.   
6- AshtariJafari, M. (2010). Statistical prediction of the next great earthquake around Tehran, Iran. Journal of Geodynamics, 49, 14-18.
‎7- Atanassov, K. T. (1986).Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1), 87-96.
8-Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., &Heynen, M. (2004).Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of photogrammetry and remote sensing, 58(3), 239-258.
9-Crosetto, M., Tarantola, S., &Saltelli, A. (2000). Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, ecosystems & environment, 81(1), 71-79.
10- De Cock, M., Cornelis, C., &Kerre, E. E. (2005). Elicitation of fuzzy association rules from positive and negative examples. Fuzzy Sets and Systems, 149(1), 73-85.
11- Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., &Prade, H. (2005). Terminological difficulties in fuzzy set theory—The case of “Intuitionistic Fuzzy Sets”. Fuzzy Sets and Systems, 156(3), 485-491.  
12- Eshragh, F., &Mamdani, E. H. (1979). A general approach to linguistic approximation. International Journal of Man-Machine Studies, 11(4), 501-519.    
13-Fisher, P. F. (1999).Models of uncertainty in spatial data. Geographical information systems, 1, 191-205.
14- Gau, W. L., &Buehrer, D. J. (1993). Vague sets. IEEE transactions on systems, man, and cybernetics, 23(2), 610-614.        22- Zimmermann, H. J. (2010). Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 317-332.
15- https://en.wikipedia.org/wiki/Fuzzy_logic.
16- Regan, H. M., Colyvan, M., &Burgman, M. A. (2002). A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecological applications, 12(2), 618-628.        
17- Roy, A. J. (1999). A comparison of rough sets, fuzzy sets and non-monotonic logic. University of Keele.Staffordshre.       
18- Smith, E. T. (1993). Why the Japanese are going in for this ‘fuzzy logic’. Business Week, 39.    
19- Stoms, D. M., Davis, F. W., & Cogan, C. B. (1992). Sensitivity of wildlife habitat models to uncertainties in GIS data. Photogrammetric engineering and remote sensing, 58(6), 843-850.
20-Tsai, C. H., Chen, C. W., Chiang, W. L., & Lin, M. L. (2008). Application of geographic information system to the allocation of disaster shelters via fuzzy models. Engineering Computations, 25(1), 86-100.
21- Zadeh, L. A. (1983). The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy sets and systems, 11(1-3), 199-227.