نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فتوگرامتری، گروه ژئودزی و مهندسی نقشه برداری دانشگاه تفرش

2 استادیارگروه ژئودزی و مهندسی نقشه برداری دانشگاه تفرش

چکیده

جابجایی اندک پدید‌ه‌ها در محیط مصداقی از تغییرات سه‌بعدی تلقی شده که احتمالاً شباهت رادیومتریکی عوارض متناظر را بر هم نمی‌زند. جابجایی اندک عوارض در صحنه، فرونشست یا برآمدگی سطح زمین، اثرات مربوط به اعمال فشار و کشش محلی به مواد در صنعت و مواردی از این دست را می‌توان در زمره تغییرات هندسی قلمداد کرد که نمود رادیومتریکی محسوسی در تصاویر ندارند.در چنین شرایطی، شناسایی خودکار نقاط متناظر در تصاویر اخذ شده قبل و بعد از تغییرات هندسی، منجر به تشخیص نقاط تغییریافته بعنوان عوارض مشابه در دو مقطع زمانی می‌گردد. مثلث‌‌بندی همزمان نقاط متناظر شناسایی شده در بلوک‌های عکسی قبل و بعد از تغییرات هندسی، مستلزم تفکیک مختصات سه‌بعدی مجهول برای نقاط تغییریافته در دومقطع است. عدم لحاظ شدن این موضوع، نقص در طراحی مدل ریاضی قلمداد شده که اصلاح آن نیازمند شناسایی نقاط متناظر تغییریافته است. در این مقاله، روشی تکراری مبتنی بر پایش بردار باقیمانده‌های مربوط به مشاهدات تصویری هر نقطه‌ی سه‌بعدی در روند مثلث‌بندی پیشنهاد شده که قادر به شناسایی نقاط تغییریافته است. سازوکار این روش پیشنهادی بر پایه مقایسه‌ی نسبی شاخص‌های آماری مستخرج از بردار خطا در دو حالت مثلث‌بندی همزمان و مستقل تصاویر اخذ شده در بلوک‌های عکسی قبل و بعد از تغییرات هندسی است. در این روش پس از شناسایی نقاط تغییریافته، مدل ریاضی مربوطه در روند مثلث‌بندی اصلاح و برای هر نقطه‌ی تغییریافته دو مختصات سه‌بعدی برآورد می‌شود. نتایج اجرای روش پیشنهادی در بیش از یازده آزمایش مختلف بطور متوسط حاکی از موفقیت 85/8 درصدی در شناسایی نقاط تغییریافته با بزرگی‌ها و راستای‌های متفاوت بوده که در مقایسه با روش‌های مرسوم هندسی مبتنی بر تخمین پایدار هندسه‌ی اپی‌پلار بهبود 34/5 درصدی را نشان می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Geometrical Changes Detection in the Radiometric Unchanged Scenes through a Method based on Simultaneous bundle adjustment triangulation

نویسندگان [English]

  • Behnam Ghasemzade Qurmic 1
  • Alireza Safdarinejad 2

1 M.Sc Student of Photogrammetry, Department of Geodesy and Surveying Engineering, Tafresh University, Tafresh 39518-79611, Iran

2 Assistant Professor, Department of Geodesy and Surveying Engineering, Tafresh University, Tafresh 39518-79611, Iran

چکیده [English]

Extended Abstract
Introduction
Analyzing the image blocks captured before and after geometrical changes is known as the conventional approach for detecting them in photogrammetric applications. Developed methods can be categorized into 1- comparison of 3D models generated via the image blocks and 2- direct comparison of single images. The occurrence of radiometric differences in the geometrically changed areas can increase their discrimination and facilitate their detection. However, the occurrence of geometric changes without sensible radiometric effects is a special type of change that its identification is faced with more challenges. Slight displacement of the objects in the scene, small landslides, subsidence or uplift, the effects of local pressure and tension on objects in the industrial procedures and etc. are some examples of geometric changes that do not have a noticeable radiometric appearance in the images.
In the absence of incorrect observations, simultaneous triangulation of image blocks captured before and after geometric changes is a simple and effective way of reaching to detection of changes. In other words, by identifying the corresponding points in the fixed regions of the scene in the image blocks, the simultaneous triangulation of the image blocks captured in both epochs can align them in a unique object coordinate system. Thus, it can be possible to generate two independent and co-registered 3D models for identifying the occurred changes. However, maintaining the radiometric similarity of the changed areas leads to the identification of wrong-matched points when using automatic image matching methods.
The inclusion of an unknown 3D position for each wrong-matched point in the changed areas leads to a defect in the design of the mathematical model for the bundle adjustment. These defects result in incorrect generation of the 3D models, large and systematic errors in the residuals of observations, and incorrect estimation of the extrinsic parameters of images. The remedy to this defect is to assign two distinct unknown 3D positions for each wrong-matched point before and after changes in the bundle adjustment. Lack of prior knowledge of the wrong-matched points located in the changed areas is the cause of this problem. In this article, an iterative solution is proposed to identify and correct the effects of the wrong-matched points in the process of simultaneous bundle adjustment.
Materials and Methods
In the proposed method, at first, all the confident radiometrically matched points among all images taken before and after the geometric changes are detected via the well-known feature-based image matching methods. Their matched positions, then, are again accurately rectified and verified by the least squares image matching method. The matched points identified after refinement are classified into two categories. 1- The matched points that have been detected only in the images of one image block and 2- The matched points that have been detected at least in two images in each image block. Among the points of the second category, there probably are matched points that are geometrically changed between two epochs, but their radiometric similarities have made to incorrectly identified as the matched points between two image blocks. In this paper, these were called the wrong-matched points which are iteratively identified and their corresponding mathematical models are corrected in the triangulation process.
To do so, three different bundle adjustments are performed as the first step. Independent triangulation of the image blocks captured before and after the geometric changes and the simultaneous bundle adjustment of both blocks via the initially detected matched points of the first and second categories are the first three triangulations. Due to the existence of wrong-matched points, the initial simultaneous triangulation has a defect in the design of the mathematical model, which is gradually and in an iterative process, the wrong-matched points located in the changed areas would be identified.
Identification of the wrong-matched points is done using the relative comparisons on their residual vectors. The comparisons are designed in two consecutive statistical tests. The main idea of this method has been inspired by the well-known Baarda test in the detection of gross errors in the observations of geodetic networks. By gradual identification of the wrong-matched points, their corresponding mathematical model will be modified in the bundle adjustment.To do so, the unknown values of the 3D coordinates of these points are separated for the time before and after the change epochs.This action by modification of the mathematical model in the bundle adjustments brings back the relative equilibrium in the estimation of the residual vector of observations.
 
Results and Discussion
Implementation and comparison of the proposed method with a conventional geometric approach in identifying the incorrectly matched points (using robust estimation of the epipolar geometry) have shown the adequacy and superiority of the proposed method. The proposed method, on average in more than 11 different experiments, was able to achieve an average accuracy of 85.8% in identifying the changed points. Meanwhile, the proposed method shows a 34.5% improvement compared to the conventional geometric approach based on epipolar geometry.
               
Conclusions and suggestions
The proposed method is an effective solution for identifying the geometrically changed points in the simultaneous triangulation of image blocks before and after geometric changes when the changed areas have a stable radiometric similarity. This method is more sensitive to the occurred changes than the conventional method of identifying incorrect correspondences based on epipolar geometry. Iterative adjustment of the observations’weight matrix through the Variance Components Estimation (VCE) techniques in order to detect and eliminate the effects of wrong-matched points can be considered a future research topic in this field.

کلیدواژه‌ها [English]

  • Geometrical changes detection
  • Bundle adjustment
  • Automatic image matching
  • Baarda test
  • Residual vector
1- Ba. Z, Mohammed. A. 2021. Photogrammetry-based reverse engineering method for aircraft airfoils prediction. Advances in aircraft and spacecraft science, 8(4), 331-344. DOI: 10.12989/aas.2021.8.4.331
2- Baarda, W., 1968. A Testing Procedure For Use in Geodetic Networks,2(5). Netherlands Geodetic Commission, Delft. 97 p.
3- Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. 2008. Speeded-up robust features (SURF). Computer vision and image understanding, 110(3), 346-359 . DOI: 10.1016/j.cviu.2007.09.014
4- Beaudet, P. R. 1978. Rotationally invariant image operators. In Proc. 4th Int. Joint Conf. Pattern Recog, Tokyo, Japan, 1978.
5- Bethmann, F., &Luhmann, T. 2010. Least-squares matching with advanced geometric transformation models. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 5), 86-91.
6- Cardenal, J., Fernández, T., Pérez-García, J. L., & Gómez-López, J. M. 2019. Measurement of road surface deformation using images captured from UAVs. Remote Sensing, 11(12), 1507. DOI: 10.3390/rs11121507
7- Cook, K. L., &Dietze, M. 2019. A simple workflow for robust low-cost UAV-derived change detection without ground control points. Earth Surface Dynamics, 7(4), 1009-1017. DOI: 10.5194/esurf-7-1009-2019.
8- de Jong, K. L., &Bosman, A. S. 2019. Unsupervised change detection in satellite images using convolutional neural networks. In IEEE International joint conference on neural networks (IJCNN) (pp. 1-8). DOI: 10.1109/IJCNN.2019.8851762.
9- Esmaeili, F., Ebadi, H., Mohammadzade, A., &Saadatseresht, M. 2019. Evaluation of close-range photogrammetric technique for deformation monitoring of large-scale structures: a review. Journal of Geomatics Science and Technology, 8(4), 41-55.
10- Esmaeili F, Ebadi H. 2018. Determination of Car Body Deformation due to Collision Using Close-Range Photogrammetry. Journal of Geospatial Information Technology. 6 (1),117-129, DOI: 10.29252/jgit.6.1.117
11- Fauzan, K. N., Suwardhi, D., Murtiyoso, A., Gumilar, I., &Sidiq, T. P. 2021. Close-range photogrammetry method for SF6 Gas Insulated Line (GIL) deformation monitoring. In XXIV ISPRS Congress (2021 edition), 5-9 juillet 2021, Nice (en ligne) (Vol. 43).DOI: 10.5194/isprs-archives-XLIII-B2-2021-503-2021.
12- Fawcett, T. 2006. Introduction to receiver operator curves. Pattern Recognit. Lett, 27, 861-874.
13- Goda, I., l’Hostis, G., &Guerlain, P. 2019. In-situ non-contact 3D optical deformation measurement of large capacity composite tank based on close-range photogrammetry. Optics and Lasers in Engineering, 119, 37-55. DOI: 10.1016/j.optlaseng.2019.02.006.
14- Harris, C., & Stephens, M. 1988. A combined corner and edge detector. In Alvey vision conference (15(50),  pp. 10-5244).
15- Kot, B. C., Tsui, H. C., Chung, T. Y., Cheng, W. W., Mui, T., Lo, M. Y., ... & Brown, R. A. 2020. Photogrammetric Three-dimensional Modeling and Printing of Cetacean Skeleton using an Omura’s Whale Stranded in Hong Kong Waters as an Example. JoVE (Journal of Visualized Experiments), (163), e61700. DOI : 10.3791/61700.
16- Kurniawan, W. C., Wibowo, F. S., Lin, H. I., Handayani, A. N., &Sendari, S. 2021. Development of Photogrammetry Application for 3D Surface Reconstruction. In 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (pp. 478-482). DOI: 10.1109/ICEEIE52663.2021.9616728.
17- Liang, A., Li, Q., Chen, Z., Zhang, D., Zhu, J., Yu, J., & Fang, X. 2021. Spherically Optimized RANSAC Aided by an IMU for Fisheye Image Matching. Remote Sensing, 13(10), 2017. DOI: 10.3390/rs13102017
18- Lowe, D. G. 2004. Distinctive image features from scale-invariant key points. International journal of computer vision, 60(2), 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94.
19- Lu, D., Mausel, P., Brondizio, E., & Moran, E. 2004. Change detection techniques. International journal of remote sensing, 25(12), 2365-2401. DOI:  /10.1080/0143116031000139863.
20- Ma, S., Guo, P., You, H., He, P., Li, G., & Li, H. 2021. An image matching optimization algorithm based on pixel shift clustering RANSAC. Information Sciences, 562, 452-474. DOI: 10.1016/j.ins.2021.03.023
21- Mikhail, E. M. 1982. Observations and least squares. University Press of Amer.
22- Mikolajczyk, K., &Schmid, C. 2004. Scale & affine invariant interest point detectors. International journal of computer vision, 60(1), 63-86. DOI: 10.1023/B:VISI.0000027790.02288.f2
23- Mohamad, N., Ahmad, A., & Din, A. H. M. 2022. A Review OfUav Photogrammetry Application In Assessing Surface Elevation Changes, Journal Of Information System And Technology Management. 7 (25), 195-204, DOI: 10.35631/JISTM.725016
24- Ochoa-Arias, P., & Delgado-Pinos, O. A. 2020. 2D and 3D Photogrammetric Registration Model of the Built Heritage of Cuenca. Universitas-XXI, Revista de CienciasSociales y Humanas, (33), 163-180. Doi: 10.17163/uni.n33.2020.08.
25- Peppa, M. V., Mills, J. P., Moore, P., Miller, P. E., & Chambers, J. E. 2019. Automated co‐registration and calibration in SfM photogrammetry for landslide change detection. Earth Surface Processes and Landforms, 44(1), 287-303. DOI:  10.1002/esp.4502.
26- Rafiee, M., Saadatseresht, M. 2014, Target Free Distortion Measurement Using Close Range Photogrammetry. Geospatial Engineering Journal. 5 (2), 97-116.
27- Remondino, F., Spera, M. G., Nocerino, E., Menna, F., Nex, F., &Gonizzi-Barsanti, S. 2013. Dense image matching: Comparisons and analyses. In 2013 Digital Heritage International Congress (DigitalHeritage) 1, 47-54. DOI: 10.1109/DigitalHeritage.2013.6743712
28- Rosenholm, D. 1987. Least squares matching method: some experimental results. The Photogrammetric Record, 12(70), 493-512.  Doi: 10.1111/j.1477-9730.1987.tb00598.x.
29- Saha, S., Bovolo, F., &Bruzzone, L. 2019. Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3677-3693. DOI: 10.1109/TGRS.2018.2886643
30- Sedaghat, A., Mokhtarzade, M., &Ebadi, H. 2011. Uniform robust scale-invariant feature matching for optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4516-4527. DOI:  10.1109/TGRS.2011.2144607.
31- Teo, T. A. 2020. 3d deformation measurement of concrete wall using close-range photogrammetry. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 1175-1179. DOI: 10.5194/isprs-archives-XLIII-B2-2020-1175-2020
32- Teunissen, P., Simons, D. J., & Tiberius, C. C. J. M. 2004. Probability and Observation Theory.
33- Varshosaz, M., Afary, A., Saadatseresht, M., Mojaradi, B. 2019. A Novel Approach in Computer Vision and Photogrammetry to Recover the Relative Position and Orientation of Cameras in Stereo Images Using the SVD Decomposition of the Essential Matrix. Journal of Soft Computing and Information Technology, 8(2), 76-88.