نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، دانشکدگان فنی، دانشگاه تهران

2 استادیار دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، دانشکدگان فنی، دانشگاه تهران

چکیده

با گسترش محدوده شهرها برخی زمینهایی که پیشازاین سالها با کاربری باغ مورداستفاده قرار میگرفتند درون حریم شهرها واقع شدهاند. اختلاف ارزش زمین با کاربری باغ نسبت به کاربری شهری نظیر مسکونی و تجاری صاحبان باغها را به سمت تغییر کاربری ترغیب میکند. متولیان امور شهری با اعمال قوانین سختگیرانه سعی دارند مانع از تغییر کاربری شوند. بررسی میزان موفقیت اینگونه برنامهریزیها، نیازمند بررسی تغییر کاربری زمینهای قرار گرفته در محدوده شهر در یک بازه زمانی بلندمدت است. در این تحقیق هدف اصلی آشکارسازی باغهای شهری متروکه با استفاده از تصاویر چندزمانه ماهواره لندست است. هدف دوم تعیین میزان تغییرات باغهای شهری منطقه موردمطالعه طی 30 سال گذشته است. در این تحقیق بر پایه تصاویر ماهواره لندست در سالهای 2018 و 1988 برای دامنه شمالی کوهستان الوند در استان همدان و محدوده شهر همدان شاخص تفاضلی نرمالشده پوشش گیاهی (NDVI) در کنار دمای سطحی زمین (LST) در 9 مقطع زمانی در هر سال استخراج شد. بهطورکلی نتایج تحقیق افزایش دمای سطحی 4.75 سانتیگراد برای منطقه طی 30 سال را نشان میدهد، همچنین رابطه معکوس دمای سطحی با شاخص تفاضلی نرمالشده پوشش گیاهی مورد تأیید است. بر مبنای تفکیک باغهای شهری یک مقایسه بین سالهای 2018 و 1988 صورت پذیرفت که نتایج حاکی از کاهش 175 هکتاری باغهای شهری در منطقه موردمطالعه، معادل کاهش 49 درصدی باغهای شهری است. در بخش اصلی تحقیق بر مبنای رفتارسنجی باغهای شهری در این دو ویژگی یک شاخص تفکیک برای باغهای فعال از متروکه ارائه شده است که پس از بررسی نتایج بر مبنای دادههای واقعیت زمینی شامل 25 باغ فعال و 25 باغ متروکه، روش پیشنهادی دارای دقت کلی 82% و ضریب کاپا 0.64 است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Feasibility study of abandoned urban gardens detection using the landsat satellite images, - Case study of Hamedan City

نویسندگان [English]

  • Moslem Darvishi 1
  • Reza Shah-Hosseini 2

1 PhD Student., School of Surveying & Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Assistant Professor., School of Surveying & Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

چکیده [English]

Extended Abstract
Introduction
With the expansion of the urban limits, some of the lands that were used for gardening years ago have been located within the urban limits. The difference between the value of garden land use and urban land use, such as residential and commercial, encourages gardeners to change their land use. Urban managers try to prevent this change of use by enforcing strict rules.Assessing the success of such plans requires examining land-use change in the urban over a long periodof time. The main purpose of this study is to detect abandoned urban gardens using Landsat satellite imagery. The second goal is to determine the extent of changes in urban gardens in the study area over the past 30 years. In this study, based on Landsat satellite images in 2018 and 1988 for the northern slope of Alvand Mountain in Hamadan province and the city of Hamadan, the normalized differential index of vegetation (NDVI) along with land surface temperature (LST) in 9 time periods per year was extracted. The results indicated a 4/75 ° C increase in LSTfor the region over 30 years. Also, the inverse relationship of LST with NDVI is confirmed. Based on the separation of urban gardens, a comparison was made between 2018 and 1988, which showed a decrease of 175 hectares of urban gardens in the study area, which is equivalent to a 49% reduction in urban gardens. In the main part of the research, based on the behavioral evaluation of urban gardens, in these two characteristics, a differentiation index for active and abandoned gardens is presented. Examination of the results based on ground truth data including 25 active gardens and 25 abandoned gardens suggested that the proposed method had an overall accuracy of 82% and a Kappa coefficient of 0/64.
Materials & Methods
The study area includes a part of the northern slope of Alvand Mountain, which is limited to the southern part of Hamedan and has a latitude of 34 degrees and 45 minutes to 34 degrees and 48 minutes north and a longitude of 48 degrees and 27 minutes to 48 degrees and 31 minutes east. Ground truth data including 25 active gardens and 25 abandoned gardens were collected as field visits using a Garmin GPSMAP 62s handheld navigator so that coordinates were collected by attending the location of abandoned and active gardens. The satellite data used in this study concern the time series data of Landsat 8 satellite OLI and TIRS sensors for 2018 and Landsat 5 satellite TM sensor for 1988.
To achieve the first objective and separate active and abandoned gardens in 2018, the land surface temperature (LST) and the normalized difference vegetation index (NDVI) are calculated and the behavior pattern of these two components is examined during the year for active and abandoned gardens in nine periods according to the proposed method, a final index for separating active and abandoned gardens is presented based on the NDVI behavior pattern throughout the year. The time series of NDVI for each year is evaluated in 9 periods and garden maps are extracted in 1988 and 2018 to achieve the second objective and prepare the maps of 30-year changes in active gardens in the study area. The rate of change of area and the percentage of changes in the class of gardens are obtained by comparing the maps.
Results & Discussion
Since this study is conducted mainly to identify abandoned gardens in urban space, two criteria for assessing user accuracy and errors of commission in the abandoned garden class are very important. In other words, in this problem, the number of gardens that are properly divided into the abandoned garden class is important, and the proposed method provides an accuracy of 86%. The most important issue is the number of abandoned gardens that the proposed method has mistakenly labeled as active gardens, which is 14% in this method. Both accuracies provided are evaluated as acceptable. The overall accuracy of the proposed method is estimated at 82%, which is acceptable, indicating the efficiency of the proposed method.
Conclusion
One of the problems facing human societies today is the reduction of forests and gardens. Given the important role that trees play in improving the quality of human life, protecting them is one of the inherent duties of rulers. Various factors cause the destruction of trees, one of which is the development of urban areas in the vicinity of forests and gardens. Traditional methods of conserving natural resources and monitoring their changes have failed in practice. For example, in the study area, 49% of the tree-covered areas have declined over the past 30 years. However, the ban on construction in the area has always been emphasized by city managers in the years under study, and the inefficiency of the methods used has been proven by the statistics provided. New methods of monitoring changes based on satellite image processing can be alternatives to traditional methods due to their high accuracy and speed and significant cost reduction. The proposed index is recommended to be evaluated to separate active and abandoned gardens in other areas facing this problem using images with higher spatial resolution. In different cases of threshold limit, the overall accuracy of the proposed method is examined based on the ground truth data of the evaluator. At best, the separation of active and abandoned gardens is associated with an overall accuracy of 82%.

کلیدواژه‌ها [English]

  • Remote sensing
  • Urban gardens
  • Normalized Difference Vegetation Index (NDVI)
  • Land Surface Temperature (LST)
  • Landsat satellite
 1- Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of sensors, 2016.
2- Balew, A., & Korme, T. (2020). Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images. The Egyptian Journal of Remote Sensing and Space Science.
3- Beckschäfer, P. (2017). Obtaining rubber plantation age information from very dense Landsat TM & ETM+ time series data and pixel-based image compositing. Remote Sensing of Environment, 196, 89-100.
4- Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893-903.
5- Chen, B., Jin, Y., & Brown, P. (2019). Automatic mapping of planting year for tree crops with Landsat satellite time series stacks. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 176-188.
6- Chen, G., Thill, J.-C., Anantsuksomsri, S., Tontisirin, N., & Tao, R. (2018). Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel-and object-based tree growth model and annual Landsat time s
7- Das, S., & Angadi, D. P. (2020). Land use-land cover (LULC) transformation and its relation with land surface temperature changes: A case study of Barrackpore Subdivision, West Bengal, India. Remote Sensing Applications: Society
8- Gandhi, G. M., Parthiban, S., Thummalu, N., & Christy, A. (2015). Ndvi: Vegetation change detection using remote sensing and gis–A case study of Vellore District. Procedia Computer Science, 57, 1199-1210.
9- Granero-Belinchon, C., Adeline, K., Lemonsu, A., & Briottet, X. (2020). Phenological dynamics characterization of alignment trees with Sentinel-2 imagery: a vegetation indices time series reconstruction methodology adapted to ur
10- Hatna, E., & Bakker, M. M. (2011). Abandonment and expansion of arable land in Europe. Ecosystems, 14(5), 720-731.
11- He, H., & Ma, Y. (2013). Imbalanced learning: foundations, algorithms, and applications.
12- Huang, X., Liu, J., Zhu, W., Atzberger, C., & Liu, Q. (2019). The optimal threshold and vegetation index time series for retrieving crop phenology based on a modified dynamic threshold method. Remote Sensing, 11(23), 2725.
13- Isbell, F., Tilman, D., Reich, P. B., & Clark, A. T. (2019). Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nature ecology & evolution, 3(11), 1533-1538.
14- Jin, M., Li, J., Wang, C., & Shang, R. (2015). A practical split-window algorithm for retrieving land surface temperature from Landsat-8 data and a case study of an urban area in China. Remote Sensing, 7(4), 4371-4390.
15- Khanbani, S., Mohammadzadeh, A., Janalipour, M. (2020). Unsupervised change detection of remotely sensed images from rural areas based on using the hybrid of improved Thresholding techniques and particle swarm optimization. Earth Science Informatics, 13(3), 681-694.
16- Landsat 8 (L8) Data Users Handbook. (2016). Department of the Interior U.S. Geological Survey, USGS.
17- Li, J.-j., Wang, X.-r., Wang, X.-j., Ma, W.-c., & Zhang, H. (2009). Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecological Complexity, 6(4), 413-420.
18- Li, S., & Li, X. (2017). Global understanding of farmland abandonment: A review and prospects. Journal of Geographical Sciences, 27(9), 1123-1150.
19- Madanian, M., Soffianian, A. R., Koupai, S. S., Pourmanafi, S., & Momeni, M. (2018). The study of thermal pattern changes using Landsat-derived land surface temperature in the central part of Isfahan province. Sustainable cities
20- Mohammadzade, A., Varesi, A., Janalipour, M. (2017). Presentation of a Method for Detecting Urban Growth using Spectral- Spatial Variation Indicators and Remote Sensing Data. Journal of Geomatics Science and Technology, 6(4), 57-74.
21- Munroe, D. K., van Berkel, D. B., Verburg, P. H., & Olson, J. L. (2013). Alternative trajectories of land abandonment: causes, consequences and research challenges. Current Opinion in Environmental Sustainability, 5(5), 471-476.
22- Nink, S., Hill, J., Stoffels, J., Buddenbaum, H., Frantz, D., & Langshausen, J. (2019). Using landsat and Sentinel-2 data for the generation of continuously updated forest type information layers in a cross-border region. Remote
23- Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 125-145.
24- Peng, J., Ma, J., Liu, Q., Liu, Y., Li, Y., & Yue, Y. (2018). Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Science of the Total Environment, 635, 487-497.
25- Pourramezan Gabiyeh, S., Janalipour, M., Nikfar, M., Abbaszadeh Tehrani, N. (2020). Monitoring Spatio-temporal Changes of Kiakallayeh Wetland in Langeroud for Investigating its Damages using Remote Sensing. Wetland Ecobiology, 12 (3), 5-22.
26- Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434-440.
27- Spadoni, G. L., Cavalli, A., Congedo, L., & Munafò, M. (2020). Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sensing Applications: Society and En
28- Tan, K. C., San Lim, H., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 1509-1521.
29- Tao, Z., Yan, H., & Zhan, J. (2012). Economic valuation of forest ecosystem services in Heshui watershed using contingent valuation method. Procedia Environmental Sciences, 13, 2445-2450.
30- Townshend, J. R., & Justice, C. (1986). Analysis of the dynamics of African vegetation using the normalized difference vegetation index. International journal of remote sensing, 7(11), 1435-1445.
31- Wang, S., Ma, Q., Ding, H., & Liang, H. (2018). Detection of urban expansion and land surface temperature change using multi-temporal landsat images. Resources, Conservation and Recycling, 128, 526-534.
32- Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467-483.
33- Xian, G., & Crane, M. (2005). Evaluation of urbanization influences on urban climate with remote sensing and climate observations. Paper presented at the Proceedings of the ISPRS joint conference 3rd International Symposium Remo
34- Yin, H., Brandão Jr, A., Buchner, J., Helmers, D., Iuliano, B. G., Kimambo, N. E., . . . Rogova, N. (2020). Monitoring cropland abandonment with Landsat time series. Remote Sensing of Environment, 246, 111873.
35- Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594.