نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور زمین شناختی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری

2 عضو هیات علمی گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.

3 گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.

چکیده

در این پژوهش آلودگی هوای ایجاد شده توسط کارخانه ذوب مس خاتونآباد و تعیین شعاع تأثیر آن با استفاده از دادههای سنتینل 5 پی (Sentinel-5P) در سامانه گوگل ارث انجین مورد بررسی قرار گرفته است. دادههای مربوط به میانگین گازهای دیاکسید سولفور و دیاکسید نیتروژن با استفاده از سامانه گوگل ارث انجین در محدوده 50 کیلومتری از کارخانه و در بازهی زمانی یکروزه، هفت روزه، چهارده روزه، یکماهه، دوماهه، سهماهه، ششماهه، دوازده ماهه و سیماهه از ماه دسامبر2020 برای ارزیابی غلظت آلودگی در روزهای سرد سال و در بازههای زمانی مشابه از ماه ژوئن 2021 بهمنظور ارزیابی غلظت آلودگی در روزهای گرم سال بهدست آمد. تحلیل این دادهها برای تعیین بازههای زمانی مؤثر و میزان غلظت تجمعی آنها با استفاده از روش آماری - مکانی تحلیل لکه داغ صورت گرفته است. نتایج حاصل از تحلیل لکه داغ تصاویر مربوط به گاز دیاکسید نیتروژن نشان میدهد که در بازههای زمانی دو هفته تا دو ماهه در ماههای سرد سال لکه داغ نشانگر وجود گاز دیاکسید نیتروژن در جو مستقر در بالای کارخانه است. اما در بازههای سهماهه، ششماهه، یکساله و سیماهه در ماههای سرد لکه داغ به سمت شمال غرب و در فاصله دورتر از کارخانه مشاهده میشود. همچنین تصاویر مربوط به ماه ژوئن در اطراف کارخانه مورد مطالعه روند مشابهی را نمایان میسازد. نتایج حاصل از تحلیل لکه داغ تصاویر مربوط به گاز دیاکسید سولفور نشانگر مقدار زیاد غلظت این گاز در اطراف کارخانه است و تصاویر با بازههای زمانی یک ماهه و طولانیتر قادر به ارائه اطلاعات دقیقتر و منطقیتر در مورد میزان غلظت گاز دیاکسید سولفور هستند. باتوجه به نتایج بهدست آمده فعالیت این کارخانه میتواند دلیلی بر افزایش میزان غلظت گاز دیاکسید سولفور باشد که شعاع حدود 4 تا 6 کیلومتری و مساحت حدود 10700 هکتار در اطراف کارخانه را تحت تأثیر قرار داده است. نتایج این تحقیق میتواند کارشناسان محیط زیست و محققین را در استفاده و تفسیر بهتر از دادههای ماهواره سنتینل 5 پی در ارزیابی آلودگی هوا در مناطق صنعتی در بازههای زمانی متفاوت با درک بهتری از میزان پراکنش هر گاز در فصول گرم و سرد سال و در هر بازه زمانی یاری رساند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of So2 and No2 concentration in the atmosphere of industrial areas using RS and GIS: Case study of Khatoonabad Copper Smelting Factory, Kerman, Iran

نویسندگان [English]

  • Nazanin Hassanzadeh 1
  • Reza Hassanzadeh 2
  • Mahdieh Hosseinjanizadeh 3
  • Mehdi Honarmand 3

1 Student of Geological Remote Sensing,, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

2 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

3 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

چکیده [English]

Extended Abstract
Introduction
Air pollution is one of the most crucial environmental problem in the glob and its impact on human live and ecosystem is undeniable. The International Agency for Research on Cancer introduced air pollution as one of main causes of cancer. Therefore, by monitoring air pollution would be a necessity in industrialized cities. Air quality index include evaluation of the amount of NO2, SO2, O3, CO and Aerosol in the air. As, ground station has limited ability to assess the amount and distribution of these harmful gases in the urban and rural areas, therefore, remote sensing technology become a popular tool in assisting research to shed light on this subject. The current study evaluates air pollution caused by Khatoonabad Copper Smelting Factory using Sentinel P5 satellite images.
Materials & Methods
This research investigates the air pollution created by Khatoonabad Copper Smelting Factory and determines its impact radius, using Google Earth Engine system and Sentinel P5 satellite images. Khatoonabad Copper Smelting Factory is located in the northwest of Kerman province at the latitude of 29 Degree 59 Minute to 30 Degree 32 Minute and longitude of 54 Degree 52 Minute to 55 Degree 55 Minute. By performing the coding operation in the Google Earth Engine system, the images related to the average air pollution for So2 and No2 in the area of 50 km from the factory and in a period of 30 months from 07/04/2018 to 12/30/2021 were obtained. The amount and distribution of pollutants were examined based on one-day, seven-days, fourteen-days, one-month, two-months, three-months, six-months and twelve-months’ time periods from December 2020 to assess the concentration of pollution in the cold months of the year, also for the same time periods from June 2021 to assess the concentration of pollution in the warm months of the year.
In order to map distribution of each pollutants, Natural Break Classification and Hot Spot Analysis methods were performed on the images obtained from Google Earth Engine in GIS. Natural Break Classification method is based on Jenk optimization and classify spatial data based on statistical properties of each input where variances between classes maximize. Hot Spot Analysis methods is a spatial and statistical method that consider spatial autocorrelation among the spatial data to classify the data according to statistical significance of each class. Points that surrounded by high values and they are statistically significant called hot spot and areas that are surrounded by low values and have high negative Z score and low P values ( P value < 0.05) are called cold spot.
Results & Discussion
The results based on an averaged image for the period of 30 months indicated that the amount of So2 from 0.0000987 to 0.000698 (mol/m2) and the amount of No2 from 0.00005854 to 0.00006932 (mol/m2) in the study area that by increasing the distance from the factory, the amount of So2 and No2 decreased. Furthermore, analyzing the average amount of So2 and No2 in different period of daily, weekly, two weeks, and monthly have showed dispersed spatial distributions in warm and cold season of the year. Therefore, Sentinel 5P data in short-term periods such as daily, weekly, two-week and even one-month cannot provide accurate information on the spatial distribution of No2 and So2 in the study area.
In the data obtained from the two-month, three-month, six-month and one-year intervals, the amount of sulfur dioxide concentration has less dispersion than the short-term intervals, and as the time interval increases, the images show less dispersion of sulfur dioxide gas in polluted areas. Therefore, the obtained results indicate that Sentinel 5P images with longer time intervals of two months are able to provide more accurate and logical information about the concentration of sulfur dioxide gas in the area. However, in case of nitrogen dioxide, the imaged longer than two weeks can provide accurate information regarding the spatial distribution of this pollutant in the area.
Hot spot analysis was also performed on the images obtained in one-day, seven-day, fourteen-day, one-month, two-month, and three-month intervals from June in order to investigate the concentration and dispersion of pollution in the hot days of the year. Then the maps obtained from the hot months were compared with the maps of the same period from the cold months of the year. This comparison showed that in the maps obtained from the short-term intervals related to the hot months of the year, the density of hot spots was more observed in areas prone to the presence of sulfur dioxide gas. For example, the one-day image from December showed a lot of dispersion, while the one-day image from June indicated less dispersion and more density of gases in polluted areas. In addition, in the one-week, two-week and one-month maps from December hot spots and cold spots show much greater dispersion compared to similar maps in the same periods from June. However, by comparing the two-months and three-months hot spot maps of the cold months to the same maps of the hot months of the year, almost similar results were obtained, even more density were observed in the hot spot map of longer periods (more than two months) in winter time. The same trend happened by analyzing nitrogen dioxide in the studied area.
 
Conclusion
The results obtained from the classification of images related to sulfur dioxide gas showed that the concentration of sulfur dioxide gas in the area around the desired factory has the highest concentration value and as the distance from the factory increases, the concentration of sulfur dioxide gas decreases. Also, according to the minimum and maximum concentration of sulfur dioxide in the studied area, it is concluded that more sulfur dioxide is observed in the cold months of the year than in the warm months of the year. However, in the cold months the concentration of sulfur dioxide has a greater range of changes than the hot months of the year.
According to the results, the dispersion of sulfur dioxide concentration in short time intervals such as daily, weekly, fortnightly and even one month was very high in these time intervals. As a result, Sentinel 5P images are not able to provide logical and accurate information about the distribution of atmospheric sulfur dioxide concentration in daily, weekly, two-week and one-month intervals. In order to obtain accurate and logical information, images with time intervals longer than one month should be used, and the longer the time interval is, the more reliable the results will be.
The results of the hot spot analysis of the images related to sulfur dioxide concentration also indicated a high concentration of sulfur dioxide gas in the area around the factory. According to the obtained results, the activity of the studied factory can be a reason for the increase in the concentration of sulfur dioxide gas in this area, which has affected a radius of about 4 to 6 kilometers and an area of about 10,700 hectares around the factory.
The results obtained from the classification of images related to nitrogen dioxide gas show that the concentration of nitrogen dioxide in the area around the factory has a higher limit. According to the minimum and maximum concentration of this gas in the study area, it can be concluded that in the hot months of the year, the concentration of nitrogen dioxide gas is higher than in the cold months of the year. Considering the rapid spread of nitrogen dioxide gas in the atmosphere by the wind due to the high dynamics of this gas (Vîrghileanu et al., 2020), it can be concluded that the images obtained from the time intervals of two weeks of more can provide more information about the concentration of nitrogen dioxide in the atmosphere.
The results of the hot spot analysis of the images related to nitrogen dioxide gas showed that in the time intervals of two weeks to two months in the cold months of the year, there are hot spots that indicated the presence of nitrogen dioxide gas in the atmosphere located above the factory. However, in long-term intervals such as three months, six months, one year and thirty months, in the cold and hot months, hot spots are observed towards the northwest and at a distance from the factory.
The result of this research can assist environmentalist and researchers in using and interpreting Sentinel 5P data by considering different periods in cold and warm seasons for making informed decisions.

کلیدواژه‌ها [English]

  • Air Pollution
  • Google Earth Engine
  • GIS
  • Hot Spot Analysis
  • Sentinel P5
  • So2
  • No2
  • Khatoonabad
  • Kerman
1- احراری، امیرحسین.، (1398) موتور مجازی پردازش تصاویر ماهواره‌ای: چگونه کارهای چند ماه سنجش از دور را در چند روز انجام دهیم؟، انتشارات کلید آموزش،242 ص.
2- شامی، س.، خوش لهجه آذر، م.، قربانی، ز.، مقیمی، آ.، ثابت قدم، س.، محمدزاده، ع.، (1395) بررسی میزان تغییرات آلاینده‌های هوا در دوره انتشار ویروس کووید- 19 در ایران با استفاده از اطلاعات ماهواره سنتینل 5، نشریه علوم و فنون نقشه‌برداری: شماره3، صفحات 135-146.
3- شجاعی باغینی، ن.، فلاحتکار، س.، (1398) پایش گازهای آلاینده هوا با استفاده از فناوری سنجش از دور ماهواره‌ای،.
4- عبدالهی، ع.، (1388) نقش مورفولوژی شهری در تغییرات زمانی-مکانی آلودگی هوا و شناسایی جزایر گرمایی شهر اصفهان با استفاده از GIS و RS ، وزارت علوم تحقیقات و فناوری.
5- عیسی‌زاده، و.، آسیابی، ش.، (1399) مدل‌سازی تراکم غلظت آلاینده ازن و نیتروژن در جی آی اس و مقایسه این غلظت آلاینده با پروداکت سنتینل- 5 درسامانه گوگل ارث انجین (منطقه مورد مطالعه شهر تهران)، اولین کنفرانس بین‌المللی و دومین کنفرانس ملی فناوری‌ها و کاربردهای نوین ژئوماتیک، تبریز.
6- قنادی, م., شهری, م., مرادی, ا. (1401) 'پایش آلودگی هوا با استفاده از تصاویر ماهواره سنتینل-5 (مطالعه موردی: شهرهای بزرگ صنعتی ایران)’, فصلنامه علوم محیطی:20(2).
7- قنبری، و.، عیسی زاده، و.، (1400) مدل‌سازی تراکم غلظت آلاینده ازن و اکسید نیتروژن در جی آی اس و مقایسه این غلظت آلاینده‌ها با پروداکت سنتینل - 5 درسامانه گوگل ارث انجین - منطقه مورد مطالعه: شهر تهران، فصلنامه اطلاعات جغرافیایی.
8- Aktan, M., and Botsali, A. R. (2017). Estimation خf Winter Season Sulphur Dioxide Concentrations with an Artificial Neural Network Model. The Eurasia Proceedings of Science Technology Engineering and Mathematics, (1), 246-249.
9- Brauer, M., (2010) “How much, how long, what, and where: air pollution exposure assessment for epidemiologic studies of respiratory disease.” Proceedings of the American Thoracic Society: 7(2): p. 111-115.
10- Chen, J., et al., (2013) “Research on geographical environment unit division based on the method of natural breaks (Jenks)”. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci: 3: p. 47-50.
11- Cohen, Aaron J., et al., (2017)”Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015”. The Lancet: 389.10082: p.1907-1918.
12- Engel-Cox, J. A., et al.., (2004) “Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality”. Atmospheric environment: 38(16): p. 2495-2509.
13- Getis, A. and J.K. Ord. 1992. The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis 24.3.
14- Ghahremanloo, M., et al., (2021) “Impact of the COVID-19 outbreak on air pollution levels in East Asia”. Science of the Total Environment,. 754: 142226.
15- Loyola, D. G., et al., (2018) “The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor”. Atmospheric Measurement Techniques: 11(1): p.409-427.
16- Ord, J.K. and A. Getis. 1995. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical Analysis. 27.4.
17- Safarianzengir1 V., et al., (2020) “analysis and spatial and temporal zoning of air,pollution (carbon monoxide) using Sentinel-5 satellite data for health management in Iran”. located in the Middle East: 13: p. 709-719.
18- Savenets, M.,(2021)  “Air pollution in Ukraine: a view from the Sentinel-5P satellite”. Quarterly Journal of the Hungarian Meteorological Service: 125(2): p. 271-290
19- Soleimany, A., et al., (2021) “Application of satellite data and GIS services for studying air pollutants in Lithuania (case study: Kaunas city)”. Air Quality, Atmosphere & Health: 14(3): p. 411-429.‏
20- Somvanshi, Shivangi Saxena, et al., (2019) “Delhi air pollution modeling using remote sensing technique”. Handbook of environmental materials management: p. 1-27.
21- Vîrghileanu, M., et al.,( 2020) “Nitrogen Dioxide (NO2) Pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak”. Remote Sensing:12(21): p.3575
22- Wu, H., Hong, S., Hu, M., Li, Y., & Yun, W. (2022). Assessment of the Factors Influencing Sulfur Dioxide Emissions in Shandong, China. Atmosphere, 13(1), 142.
23- Zhao, B., Zhang, J., Liu, X., & Chen, J. (2004). Analyzing 24-hour variation of atmosphere pollution character in Luoyang city and related meteorological factors. Environ. Monit. China, 20, 21-23.