نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه جغرافیا و برنامه ریزی شهری، دانشگاه تبریز

2 دانشیار گروه جغرافیا و برنامه ریزی شهری، دانشگاه تبریز

3 دانش آموخته کارشناسی ارشد، جغرافیا و برنامه ریزی شهری، دانشگاه تبریز

چکیده

جزیره حرارتی به پدیده‌ای گفته می‌شود که در آن دمای منطقه شهری گرم‌تر از مناطق پیرامونی خود است. در همین راستا هدف اصلی پژوهش حاضر بررسی نقش مورفولوژی شهری بر جزایر حرارتی در سطح کلان‌شهر تبریز است. داده‌های مورداستفاده در این پژوهش تصاویر روزانه ماهواره‌ای لندست 8 برای سال‌های 2014 تا 2019، در دو فصل تابستان و زمستان به طور مجزا بود  و از روش الگوریتم پنجره مجزا برای استخراج دما و جزایر حرارتی استفاده شد. همچنین برای تجزیه‌وتحلیل از تحلیل‌های آمار فضایی و رگرسیون چندمتغیره  استفاده شد. تجزیه‌وتحلیل داده‌ها در نرم‌افزارهای ENVI، ArcGis  و Spss 19  صورت گرفت. نتایج به‌دست‌آمده نشان می‌دهد که توزیع جزایر حرارتی در سطح شهر تبریز به‌صورت خوشه‌ای است. پژوهش حاضر نشان داد که مورفولوژی شهری می‌تواند بر شدت جزایر حرارتی تأثیرگذار باشد. بر طبق یافته‌های مربوط به تحلیل رگرسیونی و F   محاسبه شده (17.65) و ضریب معنی‌داری به‌دست‌آمده در سطح 0.0001، متغیرهای پیش‌بین می‌توانند رفتار متغیر وابسته پژوهش را در تابستان به‌خوبی برآورده کنند. برای فصل زمستان نیز کل مدل باتوجه‌به F محاسبه شده (9.36)و ضریب معنی‌داری (0.0002) قابل‌تعمیم است. از طرف دیگر پژوهش حاضر نشان داد که فاصله از فضای سبز بر شدت جزایر حرارتی تأثیر دارد. به‌طوری‌که بر اساس یافته‌های مربوط به پژوهش و F محاسبه شده (7.596) و سطح معنی‌داری (0.00007) این موضوع را می‌توان تأیید کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of urban morphology on the intensity of urban heat islands; Case study: Tabriz

نویسندگان [English]

  • Iraj Teimouri 1
  • Akbar Asghari Zamani 2
  • Erfan Moharrampour 3

1 Assistant Professor, Department of Geography and Urban Planning, University of Tabriz

2 Associate Professor, Department of Geography and Urban Planning, University of Tabriz

3 MA, Geography and Urban Planning, University of Tabriz

چکیده [English]

Extended Abstract
Introduction:
UHI is a phenomenon whereby urban regions experience warmer temperatures than their rural surroundings. UHI influences well- being and welfare Average energy consumption and consequently, pollution and social equity of cities. Many factors contribute to urban heat island formation, as time (day and season), synoptic weather (wind, cloud), city form (materials, geometry, greenspace), city function (energy use, water use, pollution), city size (linked to form and function), geographic location (climate, topography, rural surrounds). Due to UHI adverse impacts on urban metabolism, ecological environment, the favourable living condition of cities and overall livability of cities, it has been an important research topic across various field of study and scholars gave more and more attention to it.  UHI has been studied for a long time, it was first described by Luke Howard in the 1810s. During the last decade Significant research efforts have been performed to evaluate the urban heat island phenomenon's impact on the urban environment. According the literature review the main goal of this study is; exploring the effect of Urban Morphology on UHI, in the Tabriz city.
 Materials & Method
This study is a correlation one. Be. In this research, ArcMap, ENVI and SPSS software have been used to generate data and apply relationships. To conduct this research, Landsat 8 images of OLI sensors at different dates for summer and winter have been used. In this study, to evaluate the UHI and influenced area of the city, the satellite images of land sat 8 OLI/ TIRS (thermal band 10) were used. The land sat 8 OLI/TIRS images that covered Tabriz summer and winter in the year of 2014 to 2019 were provided by USGS.
To perform radiometric correction of images from ENVI 5.1 software using FLAASH method. Flash is the first atmospheric correction tool that corrects visible wavelengths and infrared and infrared wavelengths of up to 3 micrometers. In the flash method, the Meta Data file is used to correct the desired bands, which include multispectral bands and thermal bands. For multispectral bands, radiance and reflection operations were performed, but for thermal bands, only radiance operations were performed. In this context, the Lowest and Highest  Position, Spatial Autocorrelation, Hot and Cold spots and finally multivariate Regression analysis were used.
Results and Discussion
The results of this study showed that the high temperature is most widespread in suburban areas especially in north west and south east rather than central parts of the city. According to the research findings, the average temperature of Tabriz in summer for the studied periods is equal to 37.7 ºC. also the average temperature varies in different years and does not show a specific trend. The average temperature of the city during the study period in winter is equal to 11.8 ºC. But according to the finding, the average temperature of the city in summer and winter is low compared to the surrounding areas. The average temperature difference between the city and surrounding areas is 33.7 ºC and 22.5 ºC in winter. Findings related to the autocorrelation pattern of Moran spatial analysis also show that the distribution of UHI in the city of Tabriz is clustered. The present study also showed that urban morphology can affect the intensity of Heat Islands. 
Based on the findings of regression analysis and calculated F (17.65) and the coefficient of significance obtaind at the level of 0.00, the predictor varizbles can well satisfy the behavior of the research dependent variable in the summer. For winter, the whole model can be generalized according to the calculated F (9.36) and significance coefficient (0.00).  on the other hand, the present study showed that the distance from the green space has an effect on the intensity of UHI, so that based on the findings of the study and calculated F(7.596) and significant level(0.00) this can be confirmed.
Conclusion
The present study sought to investigate the effect of urban morphology on the intensity of UHI. For this purpose, we used Landsat 8 satellite images and the technique of separate window algorithm to estimate the surface temperature. Spatial statistical analyzes such as Moran and Hot & Cold spots and multivariate linear regression were also used for analysis. In line with previous studies conducted in Iran, this study also showed that the temperature inside the city is cooler than the surrounding temperature and in a way in a city like Tabriz, we are facing cold islands instead of heat islands. The reason can be related to the compactness and high density of buildings in the cities, which requires further research. This study also showed that the surface temperature is affected by urban morphology and distance from green space. The research opens new field for future researches.

کلیدواژه‌ها [English]

  • Urban morphology
  • Urban heat islands
  • Land surface temperature
  • Tabriz
1- ایزدی، آ. محمدی، س (1394)، بررسی عوامل مؤثر جزیره گرمایی شهر تبریز، کنفرانس بین‌المللی انسانی، معماری، مهندسی عمران و شهر، ص 1-14.
2- جویباری مقدم، ی . آخوندزاده، م. سراجیان، م.(1394). ارائه یک الگوریتم پنجره مجزا نوین به‌منظور تخمین دمای سطح زمین از داده‌های ماهواره لندست8. نشریه علمی -  پژوهشی علوم و فنون نقشه‌برداری. دوره پنجم. شماره 1.
3- فیضی‌زاده، ب؛ دیده‌بان، خ؛ غلام‌نیا، خ. (1395). برآورد دمای سطح زمین با استفاده از تصاویر ماهواره لندست 8 و الگوریتم پنجره مجزا (مطالعه موردی: حوضه آبریز مهاباد). فصلنامه علمی-پژوهشی مطالعات جغرافیایی، سال 23، شماره 13،939-939.
4- ولیزاده کامران، خ؛ رحیم‌پور، ت؛ نخسین روحی، م (1394). برآورد دمای سطح زمین با استفاده از الگوریتم سبال و تصاویر ماهوارهای لندست8 (مطالعه موردی: شهر ارومیه). اولین کنگره بین‌المللی زمین، فضا و انرژی پاک، اردبیل، دانشگاه محقق اردبیلی، شماره 471
5- هاشمی،س.م. علوی پناه، س.ک. دیناروندی، م.(1392). ارزیابی توزیع فضایی سطح زمین سطح در استفاده از سنجش از راه دور حرارتی در محیط شهری، مجله محیط‌زیست. شماره 39: 1 81-92.
6- Buettner, K. J. k. and ken; C, D. Determination of infrared Emissivities of terrestrial Surface: J. Geophysical Research; Vol. 70, 1965, p. 1329-1337.
7- El-Hattab, M., Amany, S. M., & Lamia, G. E. (2018). Monitoring and assessment of urban heat islands over the Southern region of Cairo Governorate, Egypt. Egyptian Journal of Remote Sensing and Space Science, 21(3), 311–323. https://doi.org/10.1016/j.ejrs.2017.08.008
8- EPA (US Environmental Protection Agency), 2008, Reducing Urban Heat Islands: Compendium of Strategies. US Environmental Protection Agency, Washington, D.C.
9- Hathway. E.A, Sharples. S, 2012, The interaction of rivers and urban form in mitigating the urban Heat Island effect: A UK study, Building and Environment, 58, 14-22
10- Hirano, Y., & Fujita, T. (2012). Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy, 37(1), 371–383.
11- Jato-Espino, D. (2019). Spatiotemporal statistical analysis of the Urban Heat Island effect in a Mediterranean region. Sustainable Cities and Society, 46(October 2018), 101427. https://doi.org/10.1016/j.scs.2019.101427
12- Mirzaei, P. A., Haghighat, F., Nakhaie, A. A., Yagouti, A., Giguère, M., Keusseyan, R., & Coman, A. (2012). Indoor thermal condition in urban heat Island - Development of a predictive tool. Building and Environment, 57, 7–17. https://doi.org/10.1016/j.buildenv.2012.03.018
13- Peron. F, De Maria. M.M, Spinazze. F and Mazzali. U, 2015, An analysis of the urban heat island of Venice mainland, Sustainable cities and society, 19, 300-309
14- Rajasekar, U., & Weng, Q. (2009). Urban heat island monitoring and analysis using a non-parametric model: A case study of Indianapolis. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 86–96. https://doi.org/10.1016/j.isprsjprs.2008.05.002
15- Sobrino, J.A. et al (2004), “Land surface temperature retrieval from LANDSAT TM 5”, Remote Sensing of Environment, Vol. 91, PP. 377–389
16- Solecki W. D., C. Rosenzweig, G. Pope, M. Chopping, R. Goldberg., A. Polissare. 2004.  Urban Heat Island and Climate Change: An Assessment Interacting and Possible Adaptations in the Camden.  New Jersey Region, New Jersey’s Environmental Decision Making.
17- Susca, T., Gaffin, S. R., Dell’Osso, G. R., Nakayama, T., Hashimoto, S., Tayyebi, A. A. H., … Stewart, I. D. (2018). Reducing Urban Heat Islands: Compendium of Strategies. Sustainable Cities and Society, 24(1), 39p. https://doi.org/10.1016/j.uclim.2017.02.004
18- Takebayashi. H, Moriyama.M(2009) Study on the urban heat island mitigation effect achieved by converting to grass- covered parking, Solar Energy, Vol.83.Issue.8, Pp.1211-1223
19- Voogt JA, Oke TR (2003), Thermal remote Sensing of urban climates, Remote Sens Environ, 86(1):370-384
20- Zhang. Yang, Yiyun Chen, Qing. Ding, Jiang. Ping,2012, Study on urban heat island effect based on normalized difference vegetated index: a case study of Wuhan city, Procedia Environmental Sciences, 13, 574-581