نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی کشاورزی و منابع طبیعی، دانشکده علوم، مجتمع آمورش عالی گناباد

چکیده

در این تحقیق عملکرد عملیات بیابان­ زدایی با گونه­ های تاغ، اشنان، قره ­داغ، آتریپلکس و گیاهان یک ساله در یکی از کانون­ های بحرانی فرسایش بادی شمال شرق کشور در شهرستان گناباد برای شدت­ های مختلف خشکسالی تعیین شده با شاخص RDI در ماه­ های اسفند، فروردین و اردیبهشت سال­ های 1382 تا 1400 مورد بررسی قرار گرفت. برای این منظور با استفاده از تصاویر ماهواره لندست و پردازش تبدیل داده ­ها، شاخص ­های گیاهی NDVI، TDVI، SAVI و EVI در هر یک از محدوده ­های تحت عملیات برای ماه ­های مورد مطالعه در نرم­ افزار ENVI 5.3 محاسبه شد. سپس مقادیر این شاخص ­ها در وضعیت­ های مختلف شدت خشکسالی، مورد مقایسه و تجزیه و تحلیل قرار گرفت. بر اساس نتایج حاصل در تمامی شاخص ­ها، محدوده پوشش اشنان در وضعیت­ خشکسالی خیلی خشک و با ­بیش­ترین مقادیر 0/341 در شاخص EVI از وضعیت بهتری نسبت به سایر محدوده­ ها برخوردار بود. اما در شدت­ های خشکسالی متوسط و ملایم، محدوده تاغ با ­بیش­ترین مقدار 0/456 در شاخص TDVI از وضعیت بهتری برخوردار بود. در اسفند شاخص SAVI، در فروردین شاخص TDVI و در اردیبهشت دو شاخص TDVI و EVI توانایی بهتری برای تشخیص پوشش گیاهی داشتند. بین سه وضعیت خیلی خشک، خشکی متوسط و خشکی ملایم، آزمون کروسکال - والیس نشان داد در اسفند شاخص TDVI در سطح 5 درصد و شاخص SAVI در سطح یک درصد و در فروردین شاخص ­های NDVI و SAVI در سطح یک درصد و شاخص EVI در سطح 5 درصد دارای تفاوت معنی­ دار بوده ­اند. در اردیبهشت آزمون من - ویتنی نشان داد فقط شاخص SAVI در سطح یک درصد بین دو وضعیت خشکی متوسط و ملایم دارای تفاوت معنی­ دار بوده است. بر این اساس تمامی شاخص­ ها تغییرات پوشش گیاهی را در اثر شدت خشکسالی نشان دادند اما تفاوت معنی­ داری بین محدوده ­های پوشش گیاهی به دلیل مقاومت این گونه ­ها به خشکسالی نشان داده نشد بلکه تفاوت بین وضعیت­ های شدت خشکسالی معنی­ دار بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of the effect of meteorological drought on the performance of vegetation in erosion control projects using Landsat satellite images

نویسنده [English]

  • Masoud Eshghizadeh

Assistant professor, department of agricultural engineering, faculty of basic sciences, University of Gonabad, Gonabad, Iran

چکیده [English]

Extended Abstract
Introduction
 The best and most effective way to control wind erosion is to increase vegetation to cover the land surface. The roughness of the land surface is increased by vegetation. Because it increases the friction that causes a decrease in wind speed on the surface of the ground and the carrying capacity of sediments by the wind. By determining resistant species and more adapted to dry conditions, it will be possible to establish vegetation in these areas in different non-desertification projects to control and reduce wind erosion.
Materials & Methods
 In this research, in one of the critical centers of wind erosion in Gonabad County in northeastern Iran, investigated the performance of a biological project of non-desertification operations with Haloxylon aphyllum, Haloxylon persicum, Seidlitzia rosmarinus, Nitraria schoberi, Atriplex canescens and annual plants in different intensities of the drought for 2004 to 2021. At first, using the RDI index, drought intensities were determined in March, April, and May in the studied period. In the next step, the maximum, average, and minimum values of NDVI, TDVI, SAVI, and EVI indices were calculated using Landsat satellite images and data processing ENVI 5.3 software in each of the covered areas by desired specie in the studied months. In the final stage, the values of these vegetation indices were compared and analyzed for drought intensities in the areas and months.
Results
 Based on the results, in all the indices, the area covered by Seidlitzia rosmarinus had a better condition than in other areas in the very dry drought intensity and with the highest value of 0.341 in the EVI index. But in the medium and mild drought intensities, the area covered with the Haloxylon sp had a better condition than in other areas and with the highest value of 0.456 in the TDVI index. However, all studied vegetation indicators did not show any significant difference between the planted areas. In March with the very dry condition, vegetation was more dependent on the intensity of dry conditions in February. The severity of the drought in February caused the values of all vegetation indicators in March in the studied areas to be negative, except in the annual species area. In March, the SAVI index, in April TDVI index, and in May TDVI and EVI indices had better ability to distinguish vegetation cover. The results of the Kruskal-Wallis test showed that in March, there was a significant difference between high, medium, and mild dry conditions only for the TDVI index at the level of 5% and the SAVI index at the level of 1%. In April, the NDVI and SAVI indices at the level of 1% and the EVI index at the level of 5% showed a significant difference between the three dry conditions. The results of the Mann-Whitney test showed that in May, only the SAVI index had a significant difference at the level of 1% between the moderate and mild dry conditions.
Discussion & Conclusion
 The results confirmed the ability of vegetation indices obtained from Landsat satellite imagery to monitor the vegetation changes due to the drought. All the indices showed changes in the vegetation in the drought conditions, but no difference was seen between the vegetation areas. The resistance of the species to drought was one of the main reasons that caused there to be no significant difference between the vegetation areas, but the difference between the drought conditions was significant. Due to the adaptation and resistance of desert species to drought conditions, their sensitivity to drought in dry and desert areas is lower than in humid areas. In the condition that February is affected by drought, the cover conditions of annual plant species in the studied area in March were better than in other areas. But in March with very dry or moderate drought conditions, the cover conditions of Seidlitzia rosmarinus species were better coverage than in other areas. Based on the results, in the continuation and occurrence of moderate to high drought in April and May, the area of Seidlitzia rosmarinus showed a better cover than in other areas. In the condition of continued drought in March, annual plants do not have a chance to grow and the species that can use the moisture reserve in the deeper soil will have more opportunity to cover the surface of the ground, which this research showed that among the species in this area, Seidlitzia rosmarinus has more ability. Therefore, the principle of mixed planting and preventing single planting in the desert restoration and non-desertification projects should be emphasized and implemented.

کلیدواژه‌ها [English]

  • Desert
  • Natural resources
  • Non-desertification
  • Wind erosion
1- Abdolalizadeh, Z., Ghorbani, A., Mostafazadeh, R., & Moameri, M. (2020). Rangeland canopy cover estimation using Landsat OLI data and vegetation indices in Sabalan rangelands, Iran. Arabian Journal of Geosciences, 13(6), 1-13. DOI: 10.1007/s12517-020-5150-1
2- Afsharinia, M., & Panahi, F. (2021). Effect of climatic drought on surface soil salinity in Kashan Plain. Water and Soil Management and Modelling, 1(2), 36-46. DOI: 10.22098/mmws.2021.8982.1018 (In Persian)
3- Ahmadi, S., Azarnivand, H., Khosravi, H., Dehghana, P., & Behrang Manesh, M. (2019). Assessment the effect of drought and land use change on vegetation using Landsat data. Desert, 24, 23-31. DOI: 10.22059/jdesert.2019.72432
4- Akbarian, M., & Bineaz, M. (2011). Evaluation of plant species used in wind erosion control (Case Study Jask city, Hormozgan province). Environmental Erosion Researches, 1(2), 29-42. DOI: http://dorl.net/dor/20.1001.1.22517812.1390.1.2.3.3 (In Persian)
5- Assal, T. J., Anderson, P. J., & Sibold, J. (2016). Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. Forest Ecology and Management, 365, 137-151. DOI: 10.1016/j.foreco.2016.01.017
6- Bagheri, S., Heydari Alamdarloo, E., Khosravi, H., & Abolhasani, A. (2022). The effect of meteorological drought on vegetation dynamics in Iran. Journal of Rangeland, 15(4), 622-637. DOI: http://dorl.net/dor/20.1001.1.20080891.1400.15.4.4.5 (In Persian)
7- Dutra, D. J., Elmiro, M. A. T., Nero, M. A., Coelho, C. W. G. A., & Temba, P. C. (2021). Temporal analysis of drought coverage in a watershed area using remote sensing spectral indexes. Sociedade & Naturazea, 33, e59505. DOI: 10.14393/SN-v33-2021-59505
8- Ekhtesasi, M. R. (2010). Plants suitable for sand dunes and sand sheets fixation in Iran (Major Psammophytes in Iran). Yazd University Press, 246 p. (In Persian)
9- Farzaneh, S., Shahhoseini, R., & Kordpour, I. (2021). Combining satellite-based gravity data and information received from ground stations to provide an efficient index for drought monitoring in Iran. Scientific- Research Quarterly of Geographical Data (SEPEHR), 30(117), 7-17. DOI: 10.22131/sepehr.2021.244447 (In Persian)
10- Firouzi, F., Tavoosi, T., & Mahmoudi, P. (2019). Valuation of sensitivity of NDVI and EVI vegetation indices to droughts and wetlands in arid and semi-arid regions; Case study: Sistan plain of Iran. Scientific- Research Quarterly of Geographical Data (SEPEHR), 30(117), 110, 163-179. DOI: 10.22131/sepehr.2019.36621 (In Persian)
11- Forests, Range and Watershed Management Organization. (2003). Soil Report on Desertification Implementation Plan of Amrani-Nodeh Pashang region of Gonabad, Khorasan Razavi General Office of Natural Resources. (In Persian)
12- Jafari, M., Azarnivand, H., Tavakoli, H., Zehtabian, Gh. R., & Esmailzadeh, H. (2004). Investigation on different vegetation effects on sand dunes stabilization and improvement in Kashan. Pajouhesh & Sazandegi, 64, 16-21. (In Persian)
13- Jentsch, A., Kreyling, J., Elmer, M., Gellesch, E., Glaser, B., & Grant, K. (2011). Climate extremes initiate ecosystem regulating functions while maintaining productivity. Journal of Ecology, 99, 689-702. DOI: 10.1111/j.1365-2745.2011.01817.x
14- Karabulut, M. (2003). An examination of relationships between vegetation and rainfall using maximum value composite AVHRR- NDVI data. Turk Journal of Botany, 27, 93-101. DOI: https://journals.tubitak.gov.tr/botany/vol27/iss2/4
15- Khosravi, H., Heidari Alamdarloo, E., Shekoohizadegan, S., & Zareie, S. (2017). Assessment of the Effect of Drought on Vegetation in Desert Area using Landsat Data. The Egyptian Journal of Remote Sensing and Space Science, 20, S3-S12. DOI: 10.1016/j.ejrs.2016.11.007
16- Mardani, R., Montaseri, H., Fazeli, M., Khalili, R., & Esmaeili, H. (2022). Spatio-temporal variation of meteorological drought and its relation with temperature and vegetation condition indices using remote sensing and satellite imagery in Marvdasht city. Water and Soil Management and Modelling. DOI: 10.22098/mmws.2022.11541.1140 (In Persian)
17- Mirmousavi, S.H., & Karimi, H. (2011). Effect of Drought on Vegetation Cover Using MODIS Sensing Images Case: Kurdistan Province. Journal of Geography and Development, 11(31), 57-76. DOI: 10.22111/gdij.2013.794 (In Persian)
18- Peters, A., Lei Ji, W., Hayes, M., Svobooda, M., & Hayes, M. (2003). Drought monitoring with NDVI based standardized vegetation index. Photogrammetric Engineering and remote sensing, 68(1), 71-75.
19- Refahi, H. (2012). Wind erosion and its control 6th ed. University of Tehran Press, 320 p. (In Persian)
20- Shokoohi, A. (2011). Comparison of SPI and RDI in drought analysis in local scale with emphasizing on agricultural drought (Case study: Qazvin and Takestan). Journal of Irrigation and Water Engineering, 3(4), 111-122. (In Persian)
21- Tigkas, D., Vangelis, H., & Tsakiris, G. (2017). An enhanced effective reconnaissance drought index for the characterisation of agricultural drought. Environmental Processes, 4, 137-148. DOI: 10.1007/s40710-017-0219-x
22- Tigkas, D., Vangelis, H., & Tsakiris, G. (2015). DrinC: a software for drought analysis based on drought indices. Earth Science Informatics, 8(3), 697-709. DOI: 10.1007/s12145-014-0178-y
23- Tsakiris, G., Loukas, A., Pangalou, D., Vangelis, H., Tigkas, D., Rossi, G., & Cancelliere, A. (2007). Drought characterization. In: Iglesias, A., Moneo, M., López-Francos A., (eds.), Drought Management Guidelines Technical Annex, Options Méditerranéennes, Series B, No. 58, Zaragoza. Spain, 85-102.
24- Tsakiris, G., & Vangelis, H. (2005). Establishing a drought index incorporating evapotranspiration. European Water, 9/10, 3-11.
25- U.S. Geological Survey. 2022. Earth Resources Observation and Science: U.S. Geological Survey database, Earth Explorer, http://earthexplorer.usgs.gov.
26- Yaghmaei, L., Soltani, S. Jafari, R., Bashari, H, & Jahanbazi, H. (2017). An investigation on impact of drought on rangeland and forest vegetation changes in Chaharmahal & Bakhtiari province using MODIS satellite data. Iranian Journal of Forest and Range Protection Research, 15(1), 91-108. DOI: 10.22092/ijfrpr.2017.107600.1216 (In Persian)
27- Zargaran, P., Bazrafshan, J., Aghashariatmadari, Z., Hejabi, S., & Kamali, S. (2020). Daily monitoring of drought effects on vegetation cover using ERA-Interim precipitation data and MODIS Images (Case study: Kermanshah Province). Journal of Agricultural Meteorology, 7(2), 3-14. DOI: 10.22125/agmj.2019.140733.1020 (In Persian)
28- Zhao, Z., Zhang, Y., Liu, L., & Hu, Z. 2018. The impact of drought on vegetation conditions within the Damqu River Basin, Yangtze River Source Region, China. Plos one, 13(8): e0202966. DOI: 10.1371/journal.pone.0202966