Document Type : Research Paper

Authors

1 Department of Geography, School of Human Sciences, Hormozgan University, Bandar Abbas, Iran

2 Senior expert in remote sensing and geographic information system (GIS), water and soil studies, faculty of human sciences, department of geography, Hormozgan University

Abstract

Extended Abstract
Introduction
Environmental changes are one of the most critical challenges to achieving sustainable development. Wetlands are part of the earth's structure and as one of the important ecosystems consisting of water, vegetation, soil and microorganisms. Monitoring, management and assistance in decision-making and policy-making of surface water changes can be done according to the availability of satellite data. The availability of Landsat data helps a lot in preparing a high-quality map to show the land surface changes. Although remote sensing is superior to traditional methods in terms of time, speed, and cost, these methods require the use of powerful and practical systems that include complex analysis. The use of data and images on the web is a solution that can be used to solve the mentioned problem, which studies can be done with high accuracy and speed without the need for a strong hardware and software system. The Google Earth Engine system creates suitable conditions for processing satellite images for environmental monitoring and analysis. The purpose of this research is to monitor the dynamic changes in the Miangaran wetland sub-basin in the period (2013-2022).
Materials & Methods
Miangaran wetland with an average area of 2500 hectares is located at a distance of one and a half kilometers from Izeh city, in the northeast of Khuzestan province. Time series analysis is one of the most common operations in remote sensing that helps to understand and model seasonal patterns as well as monitor changes. In this research, 421 images from the ee.ImageCollection ("LANDSAT/LC08/C02/T1_L2") data set were used for the period from 2013 to 2022. The construction of a harmonic model was used in this research due to its flexibility in cyclic calculation with simple and repeatable forms. The normalized differential water index is an index for drawing and monitoring content changes in surface waters. Also, the Normalized Difference Vegetation Index (NDVI) is one of the most common remote sensing indices. Harmonic time series of water body and vegetation cover were extracted using NDWI and NDVI indices in Google Earth Engine platform, and Mann-Kendall's non-parametric test was performed using time series data output with XLSTAT extension in Excel software. Finally, global water data was used to confirm and complete the results of time series analysis.
Results, discussion and conclusion
The results of the harmonic time series of the water body showed a decreasing and negative trend and more changes in the sub-basin. Kendall's statistical test confirmed the decreasing and negative trend of the water body. Accordingly, since the calculated p-value (<0.0001) is lower than the alpha significance level (0.05), the null hypothesis should be rejected and its alternative hypothesis, the existence of a trend in the time series, should be accepted. The value of Kendall's tau also confirmed a negative value (-0.245) and a decrease. Due to the negative sen's slope statistic for the water area (-0.002), changes are more in the Miangaran Wetland sub-basin. The results of the Mann-Kendall test for the observed vegetation data showed the absence of a trend in the harmonic time series. Since the calculated p-value (0.064) is higher than the significance level of alpha (0.05), the null hypothesis (absence of trend) cannot be rejected. The risk of rejecting the null hypothesis (while true) is 43.6%. Kendall's tau statistic showed a negative value (-0.060) and a non-significant decrease. Therefore, accepting the null hypothesis (absence of trend) indicates that vegetation changes in the harmonic time series were not significantly different from each other. Also, the negative sen's slope statistic for vegetation (-0.026) indicates more changes in the sub-basin of Miangaran Wetland. By comparing with the results and analysis of other researches, it seems that human intervention and change of land use can be the cause of the lack of trend in the Miangaran Wetland sub-basin. Also, according to the negative value of Man-Kendall's vegetation cover which showed a non-significant decreasing trend, it seems that climate change and drought have also played a major role in the changes under the Miangaran wetland basin. The study of the global water data also showed that the water occurrence in terms of space-time is decreasing and the intensity of the change of water occurrence is critical under the basin of Miangaran wetland. The marginal parts of Miangaran Wetland show seasonal water loss, most of these changes occur during the period. This research confirmed the use of harmonic time series in monitoring wetland dynamic changes. Finally, the allocation of water rights, the establishment of laws and the determination of the limit of the ecological bed, and the use of Google Earth Engine capabilities to monitor environmental changes (use, temperature, precipitation, evaporation, etc.) of the Miangaran Wetland sub-basin were suggested.

Keywords

Main Subjects