Document Type : Research Paper


1 Professor of climatology, University of Zanjan, Zanjan, Iran

2 Associate professor, University of Kurdistan, Sanandaj, Iran

3 Professor of climatology, University of Isfahan, Isfahan, Iran

4 Ph.D Candidate of climatology (Climate change), University of Zanjan, Zanjan, Iran


Extended Abstract
The tropopause is a thin layer separating the stratosphere from the troposphere and is often characterized by a large change in the thermal, mass and chemical structure of the atmosphere.Compared to global studies on the tropopause and its various features, studies conducted in Iran are very few and the methods used are often less inclusive or the length of the statistical period is limited. For this reason, and considering the importance of the tropopause and its effect on exchanges between the troposphere and the stratosphere, and also due to the lack of information about it in Iran, accurate knowledge of the height of the tropopause in the country using more reliable data sources is a fundamental necessity.
 To calculate the tropopause, we used daily temperatures of ECMWF reanalysis datasets from January 1979 until December 2018. Gridded data witha spatial resolution of 0.25*0.25 were used. In vertical levels, we used 10 standard isobaric surfaces from 700 to 50 hPa.
The location of the tropopause thermally and dynamically was defined. According to the WMO (World Meteorological Organization), the tropopause is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, provided that the average lapse rate between this level and all higher levels within 2 km does not exceed 2°C/km.In this study, this index was used to identify the tropopause.In this study, to identify the factors affecting the tropopause, the relationship between the tropopause and spatial variables (latitude and longitude) and altitude was evaluated by general and partial correlations.
Results & Discussion
The results of this study showed that in the months of cold season, the tropopause pressure level on Iran is followed by latitude, and the tropopause height decreases with increasing latitude, but in the months of the warm season (June, July, and August), the tropopause pressure level is different from the months of the winter season.In these months, the changes in the tropopause pressure levels do not follow the latitude; on the Zagros and Kerman heights, the tropopause height is at its lowest, while the highest tropopause elevation is in these months at higher latitudes than in other months.The temperature of the upper and lower levels of tropopause also showed that the temperature of the lower levels of the tropopause in all seasons was below the temperature of the upper levels of the tropopause and the temperature of the two levels changed with the changes in the levels of tropopause pressure in different months.The study of low and high levels of tropopause showed that during the cold season, the temperature of the two levels around the tropopause, following the tropopause pressure levels, follows the latitude, and with increasing latitude, temperature increases in the two levels around the tropopause.In two studied seasons, the lowest temperature of the two levels of the tropopause is consistent with the highest level of the tropopause, but the highest two-level temperature is only consistent with the lowest tropopause pressure level during the warm season months, and in other months, this observation coordination failed.Investigating the thermal difference between two levels of tropopause showed that the temperature difference between the two levels of the tropopause in the warm season is more significant than that of the cold season, while in the cold season, the temperature difference in most regions of the latitude is obeyed. Slowly, the difference in temperature decreases with increasing latitude.
Examination of the characteristics of the tropopause and its related factors for summer and winter showed that in each season due to local conditions and changes in large-scale factors, the height of the tropopause changes, and therefore the tropopause in each season has completely different characteristics from the other season.Examination of the characteristics of the tropopause and its related factors for summer and winter showed that in each season due to local conditions and changes in large-scale factors, the height of the tropopause changes, and therefore the tropopause in each season has completely different characteristics from the other season.


1- احمدی، ف،. رادمنش، ف. 1393. بررسی روند تغییرات متوسط دمای ماهانه و سالانه نیمه شمالی کشور در نیم قرن اخیر: نشریه آب و خاک (علوم و صنایع کشاورزی)، دوره  28 , شماره  4، صفحه 855 تا صفحه 865 .
2- برهانی، ر.، احمدی گیوی، ف.، قادر، س.، محب‌الحجه، ع،. 1397. مطالعه فراوانی و توزیع تاشدگی‌ وردایست و تغییرات فصلی آن در سال‌های 2015-2013 با تأکید بر منطقه جنوب‌غرب آسیا: مقاله 9، دوره 44، شماره 3، پاییز 1397، صفحه 607-624.
3- برهانی، ر،. احمدی گیوی، ف. 1397. تحلیل آماری- دینامیکی تاشدگی‌های وردایست منطقه جنوب‌غرب آسیا در سال‌های 2000 تا 2015 : مجله ژئوفیزیک ایران، مقاله 7، دوره 12، شماره 2، صفحه 127-146.
4- چنگیزی، ه. 1394. بررسی اقلیم شناختی وردایست دینامیکی روی ایران: پایان نامه کارشناسی ارشد هواشناسی، دانشگاه تهران.
5- حجازی‌زاده، ز. 1376. بررسی سینوپتیکی نرمال پرفشار جنب حاره: آموزش جغرافیا، شماره 45، صفحه 20 تا 25.
6- دارند، م.، 1394. وردایی دمای هوای ایران از سطح زمین تا پوش سپهر زیرین به عنوان نمایه‌ای از تغییر اقلیم در بازه زمانی 1979 تا 2014: مجله فیزیک زمین و فضا، دوره  41 ، شماره 2، صفحه 350-337.
7- شریفی، م،. سام خانیانی، ع. 1390. استفاده از تکنیک GPS Radio Occultation در بررسی تغییرات اقلیمی: همایش ژئوماتیک 90، تهران، سازمان نقشه برداری کشور.
8- عساکره، ح،. قائمی،. ه،. فتاحیان،. م. 1394. اقلیم‌شناسی مرز شمالی پشته پرفشار جنب حاره بر روی ایران: نشریه پژوهش های اقلیم شناسی، سال هفتم، شماره 25-26.
9- علیجانی، ب. 1385. آب و هوای ایران: انتشارات پیام نور، تهران، 221 ص.
10- علیجانی، ب،. 1377. تعیین فصول طبیعی ایران. پژوهش‌های جغرافیای طبیعی، شماره1423،  21-33
11- کاویانی، م. ر. ، علیجانی، ب.  1380. مبانی آب و هواشناسی، انتشارات سمت، ص 366-363.
12- کریمی، م. طباطبائیان، ع،. شفی، ح،. شکرالهی، م. 1384. بررسی و مطالعه نوسانات ازن کلی جو با تغییرات تروپوپاز (وردایست) بر فراز شهر اصفهان: دوازدهمین کنفرانس ژئوفیزیک، تهران، سازمان زمین شناسی.
13- کیخسروی، ق. 1394. تحلیل همدیدی – آماری تغییرات ارتفاع لایه تروپوپاوز بعنوان نمایه ای از تغییر اقلیم در خراسان رضوی: آب و هواشناسی کاربردی، دوره 2، شماره 2، صفحه 33-48.
14- لشکری، ح،. داداشی رودباری، ع،. محمدی، ز،. 1396. تحلیل تغییرات ماهانة ارتفاع لایة تروپوپاوز بر روی ایران: پژوهش‌های جغرافیای طبیعی، 49(1)، صفحه 113-133.
15- مسعودیان، س­.اء. 1383. بررسی روند دمای ایران در نیم سدة گذشته: مجله جغرافیا و توسعه، دوره 2، شماره پیاپی 3، 89-106.
16- مسعودیان، س.ا،. 1390. آب و هوای ایران، چاپ اول، انتشارات شریعه توس.
17- Añel, J. A., Gimeno, L., de La Torre, L., & Nieto, R. 2006. Changes in tropopause height for the Eurasian region determined from CARDS radiosonde data: Naturwissenschaften, 93(12), 603-609.
18- Emanuel, K. 2010. Tropical cyclone activity downscaled from NOAA‐CIRES reanalysis, 1908–1958. Journal of Advances in Modeling Earth Systems, 2(1).
19- Feng, S., Fu, Y., & Xiao, Q. 2012. Trends in the global tropopause thickness revealed by radiosondes: Geophysical Research Letters, 39(20).
20- Fueglistaler, S., Dessler, A.E., Dunkerton, T.J., Folkins, I., Fu, Q., Mote, P.W., 2009. Tropical tropopause layer: Rev. Geophys. 47, RG1004.
21- Gettelman, A., Hoor, P., Pan, L. L., Randel, W., Hegglin, M. I., & Birner, T. 2011. The extratropical upper troposphere and lower stratosphere: Reviews of Geophysics, 49(3).
22- Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., ... & Zhai, P. 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data: Atmospheric Chemistry and Physics, 16(20), 13309.
23- Highwood, E. J., & Hoskins, B. J. 1998. The tropical tropopause: Quarterly Journal of the Royal Meteorological Society, 124(549), 1579-1604.
24- Hoinka, K. P. (1998). Statistics of the global tropopause pressure: Monthly Weather Review, 126(12), 3303-3325
25- Homeyer, C. R., Bowman, K. P., & Pan, L. L. 2010. Extratropical tropopause transition layer characteristics from high‐resolution sounding data. Journal of Geophysical Research: Atmospheres, 115(D13).
26- Hu, D., Tian, W., Guan, Z., Guo, Y., & Dhomse, S. (2016). Longitudinal asymmetric trends of tropical cold-point tropopause temperature and their link to strengthened Walker circulation. Journal of Climate, 29(21), 7755-7771.
27- Jiang, X., Wang, D., Xu, J., Zhang, Y., & Chiu, L. S. 2018. Characteristics of observed tropopause height derived from L-band sounder over the Tibetan Plateau and surrounding areas: Asia-Pacific Journal of Atmospheric Sciences, 53(1), 1-10.
28- Li, D., & Bian, J. 2015. Observation of a summer tropopause fold by ozonesonde at Changchun, China: Comparison with reanalysis and model simulation. Advances in Atmospheric Sciences, 32(10), 1354-1364.
29- Manney, G. L., Hegglin, M. I., Daffer, W. H., Schwartz, M. J., Santee, M. L., & Pawson, S. 2014. Climatology of upper tropospheric–lower stratospheric (UTLS) jets and tropopauses in MERRA: Journal of Climate, 27(9), 3248-3271.
30- Mears, C. A., Schabel, M. C., & Wentz, F. J. 2003. A reanalysis of the MSU channel 2 tropospheric temperature record: Journal of Climate, 16(22), 3650-3664.
31- Mohanakumar, K. 2008. Stratosphere troposphere interactions: an introduction: Springer Science & Business Media.
32- Peethani, S., Sharma, N., & Pathakoti, M. 2014. Effect of tropospheric and stratospheric temperatures on tropopause height: Remote sensing letters, 5(11), 933-940.
33- Pellico, J. Á. B. 2018. Analysis of tropopause variability in observations and in an idealized model: TESIS DOCTORAL. UNIVERSIDAD COMPLUTENSE DE MADRID, FACULTAD DE CIENCIAS FÍSICAS, Departamento de Física de la Tierra, Astronomía y, Astrofísica I.
34- Randel, W. J., & Jensen, E. J. 2013. Physical processes in the tropical tropopause layer and their roles in a changing climate: Nature Geoscience, 6(3), 169.
35- Randel, W. J., Wu, F., & Gaffen, D. J. 2000. Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. Journal of Geophysical Research: Atmospheres, 105(D12), 15509-15523.
36- Randel, W. J., Wu, F., & Rivera Ríos, W. 2003. Thermal variability of the tropical tropopause region derived from GPS/MET observations: Journal of Geophysical Research: Atmospheres, 108(D1).
37- Randel, W. J., Wu, F., Oltmans, S. J., Rosenlof, K., & Nedoluha, G. E. 2004. Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures: Journal of the Atmospheric Sciences, 61(17), 2133-2148.
38- Randel, W. J., Wu, F., Voemel, H., Nedoluha, G. E., & Forster, P. 2006. Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer‐Dobson circulation: Journal of Geophysical Research: Atmospheres, 111(D12).
39- Reichler, T.; Dameris, M. and Sausen, R. 2003. Determining the tropopause height from gridded data, Geophysical
40- Rocken, C., Anthes, R., Exner, M., Hunt, D., Sokolovskiy, S., Ware, R., ... & Kuo, Y. H. 1997. Analysis and validation of GPS/MET data in the neutral atmosphere. Journal of Geophysical Research: Atmospheres, 102(D25), 29849-29866.
41- Santer, B. D., Wehner, M. F., Wigley, T. M. L., Sausen, R., Meehl, G. A., Taylor, K. E., ... & Brüggemann, W. 2003. Contributions of anthropogenic and natural forcing to recent tropopause height changes: science, 301(5632), 479-483.
42- Sausen, R., & Santer, B. D. 2003. Use of changes in tropopause height to detect human influences on climate. Meteorologische Zeitschrift, 12(3), 131-136.
43- Schneider, T. 2004. The tropopause and the thermal stratification in the extratropics of a dry atmosphere. Journal of the atmospheric sciences, 61(12), 1317-1340.
44- Seidel, D. J., & Randel, W. J. 2006. Variability and trends in the global tropopause estimated from radiosonde data. Journal of Geophysical Research: Atmospheres, 111(D21).
45- Seidel, D. J., Ross, R. J., Angell, J. K., & Reid, G. C. 2001. Climatological characteristics of the tropical tropopause as revealed by radiosondes. Journal of Geophysical Research: Atmospheres, 106(D8), 7857-7878.
46- Shea, J., Worley, J., Stern, R., & Hoar, J. 1994. An introduction to atmospheric and oceanographic data.
47- Tang, C., Li, X., Li, J., Dai, C., Deng, L., & Wei, H. 2018. Distribution and trends of the cold-point tropopause over China from 1979 to 2014 based on radiosonde dataset: Atmospheric Research, 193, 1-9.
48- Varotsos, C., Cartalis, C., Vlamakis, A., Tzanis, C., & Keramitsoglou, I. 2004. The long-term coupling between column ozone and tropopause properties: Journal of Climate, 17(19), 3843-3854.
49- Varotsos, C., Efstathiou, M., & Tzanis, C. 2009. Scaling behaviour of the global tropopause. Atmospheric Chemistry and Physics, 9 (2), 677-683.
50- Vernier, J‐P, L. W. Thomason, and J. Kar. 2011. “CALIPSO detection of an Asian tropopause aerosol layer.” Geophysical Research Letters 38, no. 7.
51- Vinnikov, K. Y., & Grody, N. C. 2003. Global warming trend of mean tropospheric temperature observed by satellites: Science, 302(5643), 269-272.
52- Ware, R., Rocken, C., Solheim, F., Exner, M., Schreiner, W., Anthes, R., ... & Hardy, K. 1996. GPS sounding of the atmosphere from low Earth orbit: Preliminary results: Bulletin of the American Meteorological Society, 77(1), 19-40.
53- Wargan, K., & Coy, L. 2016. Strengthening of the tropopause inversion layer during the 2009 sudden stratospheric warming: A MERRA-2 study. Journal of the Atmospheric Sciences, 73(5), 1871-1887.