Document Type : Research Paper


1 Associate professor of political and tourism geography, Islamic Azad University, Garmsar Branch, Garmsar, Iran

2 Ph. D. student, Department of regional science, EotvosLorand University, Faculty of science, Budapest, Hungary


Extended Abstract
In order to analyze the reduction of the impacts of natural hazards, particularly the earthquakes, four basic constituents such as conceptual understanding of development, vulnerability, recognition of the concept of risk, conceptual understanding of capacity building, and also, the recognition of risk management approaches are essential. Earthquakes and mass movements are a function of environmental factors, and identifying and segregation of seismic areas and hazard zonation is an important step in assessing environmental hazards. Therefore, Geographic Information Systems (GIS) and multi-criteria decision-making systems are the appropriate tools for zoning land in relation to seismic hazard. In this regard, the study of earthquakes and the areas with high seismic potential for all-round planning and management is imperative and inevitable. Therefore, the present research aims to study the vulnerable areas against natural hazards in Iran.
Materials & Methods
The present research is descriptive-analytical with regard to the nature of the problem and the study subject, and is a type of applied studies with an emphasis on quantitative methods. The purpose of the study is to investigate the vulnerable areas against natural hazards with an emphasis on earthquakes (Case study: Iran). In this research, the Modis Image (MOD11A1 product) of Terra satellite was used for the years 2000 to 2018. These images have a resolution of one kilometer.  Therefore, each pixel of these images covers an area of about 100 hectares of land. To identify the sites with high seismic potential, criteria such as: altitude, earth temperature, the numbers of seismic events between the years of 2000 and 2018 were taken into consideration. In order to calculate the density and intensity of the earthquakes occurring, the data from the United States geological site (related to Iran) was used, and the final output was calculated by the interpolation methods of geo-statistical IDW model - a technique which predicts unknown points based on the correlation between the measured points and their spatial structure - and the arithmetic overlapping in the GIS environment. All processes and data analysis were used in the GIS environment and eventually the overlay of the final output was determined in the form of a map (vulnerability).
Results & Discussion
In order to measure the impact of effective factors on earthquakes, the analytical software mentioned in the research methodology section was used and also, to determine the indexes effective in determining low and high risk areas for identifying the seismicity and land evaluation for different types of activities and the amount of importance of each of these criteria relative to each other with regard to the present state and the collected information and the investigation and study of the books, previous plans and experts’ opinions have been implemented, which has ultimately entered into the GIS in the forms of information layers. In the next stage, the information layers are given weight proportional to the degree of importance and its effect on the selection of the appropriate field. In order to achieve these indices, a series of maps and databases were needed so these were prepared in the GIS environment. In this research, it is assumed that by analyzing long-term time series of satellite data, such modifications can be monitored. Therefore, in this research, the profile of temperature changes was analyzed using the MOD11A1 product of the Modis sensor during the years 2000 and 2018 in Iran. the results of the research show that the temperature variation pattern for each class is different, and in general, show the increase, stability, and then logical increment over the 18-year period, which can help researchers to identify temperature changes and consequently, to select the appropriate time period to take an image to investigate the changes in the coverage of the study area.
The study area, with regard to the mainly low topography, tectonic activity and high seismicity, diverse geological and climatic conditions, have the major natural conditions for the creation of a wide range of earthquakes, and these earthquakes bring a lot of financial losses to the region annually but unfortunately, all periodic studies have been carried out without accurate and efficient planning by the relevant authorities to date. Therefore, studying and zoning of susceptible seismic areas is necessary from an absolutely scientific view. Given the obtained finalized map and the study of temperature changes and occurring events, it can be concluded that parts of the south and southwest (Bushehr, Kermanshah, Hormozgan, Khuzestan, Ilam) are very vulnerable and exposed to severe damages. Also, the latitudes related to the central half and the southeast of the country (Kerman, Sistan and Baluchestan, southwest of southern Khorasan, east of Yazd) are exposed to moderate to high damages, and the northern part of the country (Golestan, Mazandaran, Gilan, Ardebil) are located in low damage zone because with regard to the thermal investigations within the framework of the seismic identification, they are located in the high to low thermal zones. Therefore. We find out that more than one third of Iran is faced with high, one third with moderate and one third with relatively low risk. One of the main causes of the earthquake is the high heat inside the Earth where is very hot and reaches to five to six thousand degrees Celsius. Wherever there is heat, there is movement as well, so the heat of the Earth’s center moves to the top layers and displace them.


1- ابوالقاسم، امیراحمد؛ 1389، پهنه‌­بندی خطر زمین­ لغزش با استفاده از روش تحلیل سلسله مراتبی AHP مطالعه موردی: حوضه آبخیز چلاو آمل، فصلنامه علمی - پژوهشی انجمن جغرافیای ایران، سال هشتم، دوره هشتم، شماره 27، صص 203-181.
2- جهانبخش،  زاهدی، ولیزاده کامران؛ سعید، مجید، خلیل؛ 1390، محاسبه دمای سطح زمین با استفاده از روش سبال و درخت تصمیم در محیط GIS RS، در بخش مرکزی منطقه مراغه، جغرافیا و برنامه­‌ریزی، سال 16، شماره 38 ، ص 19.
3- سلیمانی، فرخ­‌نیا، معتمدی؛ نجمه، علیرضا، حسین؛ 1396، پهنه‌­بندی حساسیت زمین­ لغزش در محدود­ه­‌ی سایت حفاری چاه A با استفاده از فرآیند تحلیل سلسله مراتبی AHP، ماهنامه علمی ترویجی اکتشاف و تولید نفت و گاز، شماره‌­ی 148، ص 66.
4- شیرانی، عرب عامری؛ کوروش، علیرضا؛ 1394، پهنه‌بندی خطر وقوع زمین لغزش با استفاده از روش رگرسیون لجستیک (مطالعه موردی:حوضه دز علیا)، مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، سال نوزدهم، شماره هفتاد و دوم، 13، ص 321 تا 334.
5- صفاری، هاشمی؛ امیر، معصومه؛ 1395، پهنه‌­بندی حساسیت وقوع زمین‌­لغزش با مدل­‌های آنتروپی و منطق فازی (مطالعه موردی: شهرستان کرمانشاه)، فصلنامه جغرافیای طبیعی، سال نهم، شماره 43 ، زمستان، ص 43.
6- صفایی‌­پور، شجاعیان، آتش افروز؛ مسعود، علی، نسرین؛ 1395، پهنه‌­بندی زمین­‌لغزش با استفاده از مدل AHP در محیط GIS (منطقه مورد مطالعه روستای دره‌گز قلندران شهر دهدز)، فصلنامه جغرافیای طبیعی، سال نهم، شماره 13 ، بهار، ص 107.
7- عابدینی، فتحی؛ موسی، محمدحسین؛ 1393، پهنه‌­بندی حساسیت خطر وقوع زمین­‌لغزش در حوضه آبخیز خلخال چای با استفاده از مدل‌های چند معیاره، فصلنامه پژوهش‌­های ژئومورفولوژی کمی، سال دوم، شماره 4، بهار، صص 85-71.
8- عابدینی، یعقوب­‌نژاد اصل؛ موسی، نازیلا؛ 1396، پهنه­‌بندی خطر وقوع زمین ­لغزش در استان تهران با استفاده از مدل فازی، دو فصلنامه علمی پژوهشی مدیریت بحران، شماره 11، بهار و تابستان، ص 148.
9- عابدینی، موسی؛ 1391، پهنه‌­بندی خطر زمین‌­لغزش‌­های حوضه گیوی چای بر اساس روش تحلیل سلسله مراتبی AHP، طرح پژوهشی گروه جغرافیای دانشگاه محقق اردبیلی.
10- عظیم­‌پور، صدوق، دلال اوغلی، ثروتی؛  علیرضا، حسن، علی، محمدرضا؛ 1388، ارزیابی نتایج مدل AHP در
پهنه‌­بندی خطر زمین ­لغزه (مطالعه­ موردی: حوضه ­آبریز اهر­چای)، فصلنامه فضای جغرافیایی، دوره نُه، شماره 26، صص 87-71.
11- علیجانی، قهرودی­‌تالی، ابوالقاسم؛ بهلول، منیژه،  امیراحمد؛ 1386، پهنه‌­بندی خطر وقوع زمین­ لغزش در دامنه‌های شمالی شاه­ جهان با استفاده از GIS (مطالعه ­موردی: حوضه اسطرخی­ شیروان)، فصلنامه تحقیقات جغرافیایی، دوره 22، شماره یک، صص 132-117.
12- عمادالدین، باباجانی؛ سمیه، حسین؛ 1396، پهنه‌­بندی خطر وقوع زمین ­لغزش با استفاده از تحلیل سلسه مراتبی­ (AHP) در حوضه آبریز بابل‌رود، اولین همایش اندیشه‌­ها و فناوری­‌های نوین در علوم جغرافیایی، گروه جغرافیای دانشگاه زنجان.
13- کاظمی­ گرجی، احمدی، جعفری؛ فائزه، حسن، محمد؛ 1396، پهنه­‌بندی خطر زمین‌­لغزش با استفاده از روش F-AHP و ارائه راهکارهای مقتضی پیشگیری آن (مطالعه موردی: حوضه آبخیز نکارود)، مجله منابع طبیعی ایران (مرتع و آبخیزداری)، دوره 70، شماره سه، پاییز، صص 775-763.
14- کرم، محمودی؛ عبدالامیر، فرج ا...؛ 1384، مدلسازی کمی و پهنه‌­بندی خطر زمین ­لغزش در زاگرس چین­ خورده (حوضه‌­ی آبریز سر خون، استان چهارمحال و بختیاری)، فصلنامه پژوهش‌­های جغرافیایی، دوره 37، شماره 51، بهار، صص 14-1.
15- متولی، صدرالدین، 1396، پهنه‌­بندی زمین­ لغزش در حوضه­ آبخیز خانیان تنکابن با استفاده از مدل ارزش اطلاعات Winf، فصلنامه جغرافیای طبیعی، سال دهم، شماره 63 ، تابستان، ص 31.
16- موسی‌زاده، آمار، خداداد؛ حسین، تیمور، مهدی؛ 1395، بررسی نقش ظرفیت‌سازی در کاهش ریسک مخاطرات طبیعی (زلزله) در مناطق روستایی (مطالعه موردی: دهستان انجیرآب، شهرستان گرگان)، فصلنامه مطالعات برنامه‌ریزی سکونتگاه‌های انسانی، سال یازدهم، شماره 36.
17- موسی‌زاده، حسینی امینی، بخشی، سارلی؛ حسین، حسن، امیر، رضا، 1397، سنجش آسیب‌پذیری ساختار شهری از منظر پدافند غیر عامل در زمان بحران (مطالعه موردی: شهر گمیشان)، مجله مطالعات برنامه‌ریزی سکونتگاه‌های انسانی، دوره سیزدهم، (در حال چاپ).
18- Alizadeh, A, 2002, applicable hydrology principles, mashhad’s ferdosi uiveristy publications, 14th publication.
19- Chi KH, Park NW, Chung CJ, 2002, Fuzzy logic integration for landslide hazard mapping using spatial data from Boeun, Korea, Symposium on Geospatial Theory. Processing and Aplications, Ottawa.
20- Gemitzi, A., Falalakis, G., Petalas, C, 2011, Evaluating Landslide Susceptibility Using Environmental Factors, Fuzzy Membership Functions and GIS. Journal of Global NEST, 13(1), pp.28- 40.
21- Goetz, J. N., Guthrie, R. H. and Brenning, A, 2011, Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129(3), 376-386.
22- Guidance on the spatial distribution of climatic factors using point data, 2011, Journal of Supervisor and Strategic Deputy, p5.
23- Hadmoko DS, Lavigne F, Sartohadi J, Hadi P, Winaryo, 2012, Landslide Hazard and Risk Assessment and Their Application in Risk Management and Landuse Planning in Eastern Flank of Menoreh Mountains, Yogyakarta Province, Indonesia.
24- Intarawichian, N. Dasananda, S, 2010, Analytical Hierarchy Process for Landslide Susceptibility Mapping in Lower Mae Chaem Watershed, Northern Thailand, Suranaree J. Sci. Technol. Vol. 17(3), pp. 277-292.
25- Kumar Dahal, R., 2008, Predictive Modeling of Rainfall-induced Landslide Hazard in the Lesser Himalaya of Nepal Based on Weights-of-evidence, Geomorphology, Vol. 102, PP.496-510.
26- Nagarajan, R., A. Roy, R. Vinodkumar, A. Mukherjee. & M.V. Khire, 2000, Landslide Hazard Susceptibility Mapping based on Terrain and Climatic Factors forTropical Monsoon Reggions, Bull Eng Geol Env. 58.
27- Offer,R, Qin,Zh ,Derimian,Y, and Karnieli,A, 2014, Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm,sensor, 14(4): 5768–5780.
28- Papadavid, G., Hadjimitsis, D.G., Toulios, L., and S. Michaelides, 2013, A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions. Water resources management. 27(9): 3493-3506.
29- Pradhan B., Lee S., 2010, Delineation of landslide hazard areas on penang island, Malaysia, by using frequency ratio, logistic regression, and Artificial neural network models”, Environmental Earth Sciences 60 (5) 1037-1054.
30- RajeshwariA , Mani N D, 2014, Estimationof  Land  Surface Temperature ofDindigul District Using Landsat 8 Data, Ijret: International Journal of Research in Engineering and Technology, Volume: 03 Issue: 05, May-2014, Available @
31- Roering, J. J. Kirchner, J.W. Dietrich, W. E, 2005, Characterizing Structural and Lithological Controls on Deep-Seated Land Sliding: Implications for Topographic Relief and Landscape Evolution in The Oregon Coast Range, USA. Geological Society of America Bulletin 117, 654–668.
32- Sakar, S., Kanungo, D.P., Mehrotar, G.S, 1995, Landslide Zonation: A Case Study in Garhwal Himalaya, India, Mountain Research and Development, Vol. 15, No. 4, PP.301-309.33- Tucker, C.J. and B.Y. Choudhury, 1987, Satellite remote sensing of drought conditions. Remote Sens. Environ. 23: 243-251.
34- Wan, S., 2009, A Spatial Decision Support System for Extracting the Core Factors and Thresholds for Landslide Susceptibility Map, Engineering Geology, Vol. 108, PP.237-251.
35- Zhu A-X, Wang R, Qiao J, Qin C-Z, Chen Y, Liu J, Du F, Lin Y, Zhu T, 2014, An expert knowledge- based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology, 214: 128-138.