Document Type : Research Paper


1 M.Sc Student of Climatology University of Yazd

2 Assistant Professor of Geography University of Yazd

3 Ph.D student, University of Yazd


Extended Abstract
 Droughts are one of the most common climatic changes that occur in many arid and semi-arid regions of the world with high intensities every few years. In many years, the occurrence of droughts is also unknown for a while, therefore, the identification of drought itself, is considered as a valuable finding for managing the water resources in areas such as Iran, most of which are formed by arid and semi-arid regions. Precipitation is the most important determinant variable in drought conditions among climatic variables. Rainfall is the most important variable whose variations are directly reflected in soil moisture and surface runoff, variations in underground water reservoirs and others. The purpose of this research is to investigate the best method of drought interpolation in the Yazd-Ardakan plain, to identify areas at risk of this phenomenon and to identify its spatial distribution, and also to investigate the relationship between drought and the salinity of groundwater and the spatial distribution of saline water in the Great Plain of Yazd – Ardakan.
Materials & Methods
 In this research, regarding the lack of long-term statistical period of some stations and considering the distribution of stations in this basin, the annual precipitation data of meteorological stations of Yazd - Ardakan plain during 2 long term period of 7 meteorological stations (1346-1391), and short term precipitation and salinity period of 41 meteorological stations and 47 underground water wells (1375 to 1391) have been used all together. The standardized drought index for the determining drought condition and descriptive statistics methods in SPSS software has been used to describe the state of groundwater salinity using Excel software. The Pearson, Man-Kendhal, and Spearman correlation analyses were also used to determine the relationship between drought and the state of salinity of groundwater. Finally, the Geographic Information System (GIS) was also used to map the zoning of groundwater salinity.
Results & Discussion
The results of the assessment showed that in the correlation analysis with all 3 Pearson, Man-Kendhal, and Spearman statistics, a negative trend along with inverse correlation is observed between the precipitation (SPI) and salinity based on the Z grade,, in none of which the significant level is observed. The existence of a strong correlation between these two parameters with a one year delay was among the other results of this research. Using GS+ and GIS, the best variogram model was selected and the maps of drought, groundwater salinity and salinity variations were also drawn. Generally, in most stations with negative precipitation trend, a positive trend of underground water salinity is observed, and groundwater quality has also changed more strongly in areas with more drought outbreak and its salinity has also increased.
The occurrence of droughts, on the one hand, increasing water demand in the area, on the other hand, exacerbate the shortage and need for water. Therefore, the monitoring of future droughts and wet years should be considered very important in terms of management strategies of the region. Passing such crises require the efficient management of water resources under present conditions, especially during drought periods. Usually, during such a period, the region’s water shortage, are provided from the groundwater resources and through increasing the water extraction from wells, to meet basic needs such as drinking. Therefore, in such cases, the quality issue of the extracted water from these wells becomes more important. The available statistics show that the water quality in the Yazd-Ardakan plain (electrical conductivity) is a function of annual precipitation (as the most important feature of droughts in the region), and with the annual precipitation increasing and decreasing, the groundwater quality also undergoes changes. In general, the results of the analysis of the studied parameters indicated that the climate of Yazd-Ardakan plain was associated with a rainfall reduction trend, which is one of the important factors of drought, so that, its consequences have also affected the level and quality of water resources. It has been observed in this research, that droughts have had a considerable effect on the salinity of groundwater in most of the areas. Therefore, it is generally stated that the groundwater quality has changed more strongly in areas with more drought outbreaks and its salinity has increased.


1. بری ابرقویی، حسین، 1393، بررسی اثرات خشکسالی‌های اخیر بر شوری آب زیرزمینی و پیش‌بینی این اثرات در سه دهه آینده، مطالعه موردی: دشت بهادران، فصلنامه بین المللی پژوهشی تحلیلی منابع آب و توسعه، سال دوم، شماره 1، پیاپی 4، صص14-1.
2. پورمحمدی، سمانه، 1388، اثرات تغییر اقلیم بر منابع آب و ارائه راهکارهای مدیریتی (مطالعه موردی: حوضه آبخیز منشاد- استان یزد)، همایش ملی مدیریت بحران آب، دانشگاه آزاد اسلامی واحد مرودشت.صص 11-1.
3. چشمی، آتنا، 1393، ارزیابی اثر اقلیم بر منابع آب زیرزمینی با استفاده از شاخص‌های اقلیمی،  GIS و شبکه عصبی NARX (مطالعه موردی: دشت رامهرمز- استان خوزستان)، فصلنامه بین المللی پژوهشی تحلیلی منابع آب و توسعه، سال دوم، شماره 1، پیاپی 4، صص 70-54.
4. خوش اخلاق، رنجبر، طولابی؛ فرامرز، فیروز، سجاد؛  1389، بررسی خشکسالی در سال آبی87 – 1386 و اثرات آن بر منابع آب و کشاورزی در شهر مرودست، فصلنامه علمی- پژوهشی انجمن جغرافیای ایران، دوره جدید، سال هشتم، شماره 24، صص136 – 119.
5. رهنما؛ میراثی؛ حسین، سهراب، 1393، خشکسالی و بحران آب در دشت‌های ایران، مطالعه موردی: مرودشت و خان‌میرزا در استان فارس و چهار محال و بختیاری، فصلنامه بین المللی پژوهشی تحلیلی منابع آب و توسعه، سال دوم، شماره 1، پیاپی 4، صص154-139.
6. سلطانی گرد فرامرزی؛ مهدیه، 1393، تحلیل خشکسالی‌های اقلیمی بر میزان شوری منابع آب زیرزمینی دشت یزد – اردکان، مظفری؛ غلامعلی، دانشگاه یزد، گروه جغرافیا.
7. کاردان مقدم، خاشعی سیوکی؛ حمید، عباس؛ 1391، پهنه‌بندی در علوم آب با استفاده از زمین آمار، انتشارات قدس رضوی، ص 42.
8. کیانی، خوش روش؛ علیرضا، مجتبی، 1390، آب و امنیت غذایی، مجله علمی تخصصی کشاورزی، سال سی و یکم، شماره 215.
9. Anornu, G.K., Amos Tiereyangn Kabo-bah and M. Anim-Gyampo. 2012. Evaluation of Groundwater Vulnerability in the Densu River Basin of Ghana, American Journal of Human Ecology, 1 (3): 79-86.
10. Blenkinsop S., H. J. Fowler, 2007. Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models, Journal of Hydrology, 342:50 - 71.
11. Demir Y, Sahin S, Güler M, Cemek B, Günal H and Arslan H, 2009. Spatial variability of depth and salinity of groundwater under irrigated ustifluvents in the Middle Black Sea Region of Turkey, Environ Monit Assess, 158:279–294.
12. Mozafari, Gh. A., Khosravi, Y., Abbasi, E. and Tavakoli F, 2011. Assessment of Geostatistical Methods forSpatial Analysis of SPI and EDI Drought Indices ,World Applied Sciences Journal Vol.15, No.4,pp:474-482.
13. Polat, R. 2009. Spatial and temporal assessment of groundwater quality for the nif mountain karstic aquifer. M.Sc. Thesis. Graduate School of Natural and Applied Sciences.
14. Sheffield Eric F. Wood, 2008. projected changes in drought occurrenceunder future global warming from multi- model, multi- scenario, IPCC AR4 simulations. Clim Dyn J.31, 79-105.
15. Vijay, R., Samal, D.R., and Kumar Mohapatra, P. 2011. GIS Based Identification and Assessment of Groundwater Quality Potential Zones in Puri City, India. Journal of Water Resource and Protection, 3, 440-447.
16. Yazdani, V., Zare Abiyane, H. and Shadmani, M. 2011. Drought Frequency Analysis and Zoning of Iran Using the Standard Precipitation Index and the Geographical Information System, Iranian Journal of water Engineering,Vol. 64, No. 8,pp:31-43.