Document Type : Research Paper


1 Associate professor of geography and urban planning, University of Mohaghegh Ardabili

2 Ph.D.Student in geographyand urban planning, Mohaghegh Ardabil University


Extended Abstract
The rapidity of urbanization, especially in developing countries, has led to the fact that half of the world’s population is currently settled in urban areas. Most of these areas with high population density are vulnerable to crises (Shelter Center, 2010: xiv). The fact is that the increase in the concentration of physical capital, infrastructure and economic activities in the cities has led to the increase in adverse effects of natural disasters (Tangri et al., 2008: 30; Lall and Deichmann, 2012). Meanwhile, it has long been argued that the earthquake, as one of the most catastrophic and devastating types of natural hazards, especially in developing countries (Dong & Shan, 2013: 85)has caused lots of damages to the properties and assets in urban areas and around them, through the destruction of urban buildings and infrastructure, (Min et al, 2010). Like other developing countries, Iran has experienced a high level of urbanization that has completely changed the physical structure of urban areas (Soltani et al., 2011: 6644), so that by 2015, the urban population of the country has been 74.3 percent, which is estimated to reach 91.5 in 2050 (Statistical Yearbook for Asia and the Pacific, 2015). Increasing urbanization in the cities of the country along with unplanned development is one of the factors that boost the possibility of increasing casualties and damagesdue to the occurrence of natural disasters in the cities of the country (Pourmusavi, 1391: 40) and leads to the loss of resources and achievements whose reestablishment will take many years (Patterson et al, 2010: 128).
The present research is of applied type with descriptive-analytical method. Thestatistical population is the buildings of district 9 of Tehran municipality. Tocomplete the library informationin order to understand the status quo, the studies and deductions of the Information Technology and Communication Organization of Tehran Municipality updated in 2015 were used. The indices used in the research have been weighted based on the experts’ opinions using the Analytic Network Process (ANP), and the obtained results have been applied on the layers under study in the GIS environment and the map of each layer has been prepared in the Geographic Information System.Finally, the general vulnerability map of the region was extracted through the integration of the layers under study (overlay). The opinions of the experts are determinant in evaluating thevulnerability of the city, butin this research, in order to reach a precise evaluation, along with the preparation of the map based on the experts’ opinions, the vulnerability scenario has been developed at different intensities, thereby to standardize the data, and to analyze the layers and criteria, the fuzzy model andthe linear threshold function have been used, respectively. The results have been categorized into 5 vulnerability groups of very low, low, medium, high and very high, and the percentage of each group has been calculated. Tools used in the research are SUPER DECISION and GIS.
The present research was carried out aiming at vulnerability evaluation of urban buildings in district 9 of Tehran municipality to various intensities of earthquake, thus, in this research, the vulnerability rate of urban buildings to various earthquake intensities was measured using ten indices (type of material, type of view, building density, age of the building, number of floors, ground area of  buildings, compatibility of neighboring uses, distance from fault, geological formations and the width of passages)along with the required sub criteria. To design the earthquake scenarios at different intensities, the first step was to accomplish stratification for each of the main criteria and sub criteria using the weights obtained from the ANP in the Arc GIS environment, then, the general vulnerability map of the region was prepared by overlaying the layers. Finally, the earthquake scenarios at different intensities were designed by fuzzification of the map.
In order to determine the seismicity potential of the study area which is part of the primary and very important stepsin the process of the determination of vulnerability levels of various regions to earthquake, the preparation of the major faults’ map of the region, the preparation of the earthquakes epicenter map, the determination of the intensity and magnitude of earthquakes, the estimation of the features of earthquakes that are likely to occur by the significant faults of the study area were placed on the agenda. For this purpose, in order to evaluate the vulnerability of earthquake hazard, 10 indices were investigated as the effective factors on the vulnerability of urban buildings which have been selected based on the indices of previous studies. These indices (type of material, type of view, building density, age of the building, number of floors, ground area of buildings, compatibility of neighboring uses, distance from fault, geological formations and the width of passages) were analyzed using the ANP calculation method whichhad beenscored by the experts, and the weight of criteriawas applied to the effective layers of the vulnerability, and finally, the general vulnerability map was extracted by integrating the layers in the GIS environment. In order to evaluate the vulnerability rate of urban buildings, the data obtained from the ANP model was fuzzified, and the earthquake scenarios were ultimately designed based on the seismicity potential of Tehran faults and were applied on the general vulnerability map of the study area. The results of the research indicate that in an earthquake with a modified intensity of 6 mercalli, the vulnerability rate of urban buildings in the vulnerability ranges of very low, low, medium, high and very high are 26%, 56%, 17%, 1% and 0%, respectively and the damaged buildings in the districts 1 and 2 are in the vulnerability ranges of very low (28% & 24%), low (53% & 59%), medium (18% & 16%), high (1% & 1%) and very high (0%). In an earthquake with a modified intensity of 7mercalli, the vulnerability rate of urban buildings in the vulnerability ranges of very low, low, medium, high and very high are 21%, 10%, 52%, 16% and 1%, respectively, and the damaged buildings in the districts 1 and 2 are in the vulnerability ranges of very low (23% & 18%), low (11% & 9%), medium (48% & 56%), high (17% & 16%) and very high (1% & 1%). In an earthquake with modified intensity of 8mercalli, the vulnerability rate of urban buildings in the vulnerability ranges of very low, low, medium, high and very high are 7%, 4%, 10%, 61% and 18%, respectively.


1- آئین‌نامه 2800 (1384)، طراحی ساختمان‌ها در برابر زلزله- آئین کار، مؤسسه استاندارد و تحقیقات صنعتی ایران، تجدیدنظر سوم.
2- پورموسوی، شماعی، احدنژاد، عشقی چهاربرج، خسروی؛ سیدموسی، علی، محسن، علی، سمیه، (1393)، ارزیابی آسیب‌پذیری ساختمان‌های شهر با مدلAHP Fuzzy و GIS(مطالعه موردی: منطقه 3 شهرداری تهران)، جغرافیا و توسعه، شماره 34، صص 138-121.
3- پورموسوى، فیروزپور، دارانی؛ سیدموسی، آرمین، مسعود؛ 1391، نقش جامعه محلى در بهبود عملکرد نظام مدیریت بحران، فصلنامه دانش پیشگیرى و مدیریت بحران، سال2، شماره 1، صص42-32.
4- جعفری‌حاجتی، آق آتابای؛ فرشته، مریم؛ 1391، شناسایی مناطق مستعدخطر مرتبط با پس‌لرزه‌های زمین‌لرزه‌‌ای بزرگ (مطالعه موردی: زمین‌لرزه سیلاخور)، لرستان، مجله آمایش جغرافیایی فضا، سال 2، شماره 4، صص128-113.
5- حسینی، سلیمانی، عزیزپور، پربار؛ سیده فاطمه، محمد، فرهاد، زهرا؛ 1393، کاربرد سیستم اطلاعات جغرافیایی در نقش‌پذیری نهادهای محلی جهت مدیریت بحران زلزله مناطق روستایی(شهرستان قیروکارزین)، فصلنامه اطلاعات جغرافیایی سپهر، دوره 23، شماره 89، صص 46-53.
6- سایت شهرداری منطقه 9 تهران (1395):
7- سعدآبادی، عظیمی؛ علی‌اصغر، محدثه؛ 1393، شناسایی اقدامات اساسی در مراحل مدیریت بحران به کمک روش فازی(مورد مطالعه: شناسایی اقدامات اساسی در مراحل مدیریت بحران زلزله)، فصلنامه مطالعات برنامه‌ریزی شهری، سال 2، شماره‌6، صص 54-31.
8- شهابی، قلی‌زاده، نیری؛ همین، محمدحسین، هادی؛ (1390)، پهنه‌بندی خطر زمین‌لرزه با روش تحلیل چند معیاری فضایی، جغرافیا و توسعه، شماره21، صص 65-80.
9- صیامی، تقی‌نژاد، زاهدی کلاکی؛ قدیر، کاظم، علی؛ (1394)، آسیب‌شناسی لرزه‌ای پهنه‌های شهری با استفاده از تحلیل سلسله مراتبی معکوس (IHWP) و GIS (مطالعه موردی: شهر گرگان)، مطالعات برنامه‌ریزی شهری، سال 3، شماره‌9، صص 63-43.
10- فراهانی، عینالی، قاسمی؛ حسین، جمشید، حمید؛ 1393، نقش توسعه ظرفیتی در مدیریت کاهش خطر زلزله در مناطق روستایی(مطالعه موردی: شهرستان ابهر، دهستان سنبل‌آباد)، مسکن‌ و محیط‌روستا، شماره145، صص74-63.
11- قائدرحمتی، قانعی بافقی؛ صفدر، روح اله؛ (1391)، تحلیل تأثیر گسترش فضایی شهر تهران در افزایش آسیب‌پذیری ناشی از زلزله (دوره زمانی: گسترش فیزیکی 200 سال اخیر)، تحقیقات جغرافیایی، سال 27، شماره 2، صص 18240-18218.
12- قدیری، محمود (1395)، ارزیابی دیدگاه برنامه‌های پنج‌ساله‌ توسعه کشور به کاهش آسیب‌پذیری در برابر زلزله، جغرافیا و توسعه، شماره 42، صص 62-45.
13- کریمی‌کردآبادی، نجفی؛ مرتضی، اسماعیل؛ 1394، ارزیابی خطر زلزله با استفاده مدل ترکیبی FUZZY-AHPدر امنیت شهری (مطالعه موردی: منطقه یک کلانشهر تهران)، پژوهش و برنامه‌ریزی شهری، سال 6، شماره 20، صص34-17.
14- محمدی یگانه، اسدی لاری، سیدین، ماهر؛ شاهین، محسن، سیدّحسام، علی؛ 1390، سنجش میزان عملکرد کمی وکیفی تجهیزات و آسیب‌پذیری غیرسازه‌ای بیمارستان‌های عمومی منتخب شهر تهران هنگام وقوع زلزله، امداد و نجات، سال 3، شماره1و2، صص9-1.
15- مطالعات الگوی توسعه منطقه 9 (1384)، وزارت مسکن و شهرسازی، کارفرما: مرکز مطالعات و برنامه‌ریزی شهر تهران.
16- منزوی، سلیمانی، تولایی، چاووشی؛ مهشید، محمد، سیمین، اسماعیل؛ (1389)، آسیب‌پذیری بافت‌های فرسوده بخش مرکزی شهر تهران در برابر زلزله (مورد: منطقه 12)، پژوهش‌های جغرافیای انسانی، شماره 73، صص 18-1.
17- موحد، فیروزی، ایصافی؛ علی، محمدعلی، ایوب؛ (1391)، بررسی آسیب‌پذیری ساختمان‌های شهری در برابر زلزله با استفاده از مدل سلسله مراتبی معکوس(IHWP) در سیستم اطلاعات جغرافیایی(مطالعه موردی شهر مسجد سلیمان)، پژوهش و برنامه‌ریزی شهری، سال 3، شماره11، صص 136-115.
18- Campbell, K. W. (1981), near source Attention of Peak HorizontalAcceleration, Bulletin, Seismological Society of America, 1981.
19- Dong, Laigen, Jie Shan. (2013), A comprehensive review of earthquake induced building damage detection with remote sensing techniques, ISPRS Journal of Photogrammetry and Remote Sensing 84 (2013),PP 85–99,
20- Karimzadeh, Sadra, Masakatsu Miyajima, Reza Hassanzadeh, Reza Amiraslanzadeh, Batoul Kamel. (2014), A GIS-based seismic hazard, building vulnerability and human loss assessment for the earthquake scenario in Tabriz. Soil Dynamics and Earthquake Engineering, Volume 66, November 2014, PP 263–280.
21- Lall, S.V. and U. Deichmann (2012), Density and Disasters, World Bank Research Observer, 27-74-105.
22- Matkan AA, Shakhiba A, Poor AliS H, Nazmfar H. (2008), locating suitable sites for landfill using GIS (study area: the city of Tabriz), Journal of Environmental Sciences, 2008, (2), 121-132.
23- Ma, Xue, Ryuzo Ohno. (2012), Examination of Vulnerability of Various Residential Areas in China for Earthquake Disaster Mitigation, Procedia - Social and Behavioral Sciences, Volume 35, 2012, PP 369-377.
24- Milutinoric Zoran. V, Trenda filoski Goran. S (2003), An Advanced Approach to Earthguake Risk-Scenarios With Applications to Diffevent European Tows. RISK- UE- Evk4-CT-2000- 00014.
25- Min Xu, C., Hao Zhang, J., Kaneyuki N., Qisheng He, J., Chaoyi Chang, Y., and Mengxu
Gao, X. (2010), Change Detection of an Earthquake Induced Barrier Lake Based on
Remote Sensing Image Classification, International Journal of Remote Sensing.31(13), PP3521-3534.
26- Mohajer Ashjai, A., & Nowroozi, A. A. (1978), observed and probable intensity zoning of Iran Tectonophysics, Vol.49, PP.249-260. 1978.
27- Nath, S. K., Adhikari, M. D., Maiti, S. K., Devaraj, N., Srivastava, N., and Mohapatra, L. D. (2014), Earthquake scenario in West Bengal with emphasis on seismic hazard microzonation of the city of Kolkata, India, Nat. Hazards Earth Syst. Sci., 14, 2549-2575.
28- Nazmfar, H. (2017). Urban development predictions direction of using a combination GIS and Bayesian the probabilistic model (case study: Ardabil), Human Geography Research Quarterly, 49, 357-370.
29- Nazmfar, H. & Jafarzadeh, J. Classification of Satellite Images in Assessing Urban Land Use Change Using Scale Optimization in Object-Oriented Processes (A Case Study: Ardabil City, Iran)J Indian Soc Remote Sens (2018) 46: 1983.
30- Patterson, O., Weil, F., & Patel, K. (2010). The Role of Community in Disaster Response: Conceptual Models. Population Research and Policy Review, 29(2), pp127-141.
31- Rashed T, WEEKS John (2003). Assesssing vulnerability to Earthpuake hazards thorugh spatial Multi criteria analysis of urban arras, Geographical information Science, Voll 7.
32- S. Rout, R.P. Nanda and K.C. Panda. (2015), Asian journal of civil engineering (bhrc) vol. 16, no. 6 (2015) PP 909-918.
33- Shelter Centre (2010). Shelter after disaster: Strategies for transitional settlement and reconstruction. Geneva: Shelter Centre.
34- Soltani‚ S.R.‚ Mahiny‚ A.S.‚ Monavari‚ S.M. (2011)‚ Urban land use management, based
on GIS and multicriteria assessment (Case study: Tehran Province, Iran)‚ proceeded In
International Conference on Multimedia Technology (ICMT), Hangzhou‚ CHINA‚ 26-28 july, DOI: 10.1109/ICMT.2011.6001730, Pp: 6644 – 6647.
35- Statistical Yearbook for Asia and the Pacific. (2015),
36- Tangri. R., Jena. S., Roy. S., 2008, The Future of Earthquake Disaster Management Use GIS and Probabilistic Risk Assessment to Enhance Preparedness; Geospatial world GIS Analysis, p30.
37- UNDRO, (1976), Guidelines for Disaster Prevention, Vol 1, pre-disaster physical planning of human settlements.