Document Type : Research Paper

Authors

1 Assistant prof. geomorphology, University of Tehran

2 Ph.D. Studend of geomorphologhy, University of Tehran

3 Ph.D. Studend of geomorphologhy, Tarbiat Modares University

4 M.A. Geomorphologhy, Tabriz University

Abstract

Extended Abstract
Introduction
The land subsidence is the descending or collapse of the land under the influence of natural and human factors. The land subsidence is one of the issues that are being exacerbated by human factors, including excessive exploitation of groundwater. Subsidence can affect many constructions and facilities, causing problems for the industry, the environment, etc. This phenomenon is one of the most important environmental hazards that have been less considered than other natural phenomena due to the low human losses. The Qorveh plain is considered as one of the plains which have been introduced as a forbidden plain in the province of Kurdistan in recent years due to the over-exploitation of groundwater. Considering the amount of groundwater level drop and its direct impact on the subsidence level of the region, the present study evaluates the subsidence rate of the Qorveh plain during the period of 2017.12.19 to 2016.01.11. In this research, in order to evaluate the status of the groundwater drop, the statistical data from the Regional Water Organization of Kurdistan province has been used, and the Sentinel-1 images and the SBAS method were used (due to the unique capabilities of this method in terms of dimension, cost, time and accuracy compared to other remote sensing techniques) to estimate the subsidence rate of the region.
 Material and Methods
In this research, first, the status of the groundwater of the Qorveh plain and the drop rate of its level has been investigated. Then, the subsidence rate of the area and its relation with the groundwater drop has been investigated. Radar interferometry and SBAS were used to evaluate the subsidence of the study area. Radar interferometry method is one of the most powerful tools for monitoring the subsidence phenomenon. By comparing the phases of two radar images taken from a region at two different times, this method can determine the land surface changes at that time interval. The phase taken from a feature on the land surface is proportional to its distance to the radar sensor. Therefore, making any changes in this distance affects the measured phase. In this research, the Sentinel-1 images (2017.12.19 and 2016.01.11) have been used to perform the radar interferometry.
 Discussion and results
The hydrograph of the alluvial aquifer of the Qorveh plain has been provided for the water years of 1966-1676 to 2010-2011. During the 24 yeas, the groundwater level fluctuations in this plain are -13.29 meters, with an annual average of -0.55 meters. The least rate of dropping in the wells is in the wells located south of the Qorveh plain, and the rate increases toward the eastern and northeastern parts. In this research, the subsidence rate of the Qorveh Plain was estimated from 2017.12.19 to 2016.01.11 using the SBAS method. The final map indicates that during this period, the study area subsided between +61 and 216 cm, with the lowest subsidence occurring in the southern areas of the Qorveh plain, which corresponding to the sedimentary heights and slopes of Badr and Parishan and the rate has increased toward the east and west of the Qorveh plain.
 Conclusion
The results of this study indicate that Qorveh Plain has witnessed a sharp drop in groundwater level over the recent years. Considering that the southern parts of the Qorveh plain corresponds to the heights and slopes of Badr and Parishan, and the rate of exploiting groundwater in these parts is lower, the rate of subsidence is less. The plain has also subsided further towards theeastern, western and northern parts and the outlet of the Shoor River, due to the growing increase of exploitation. The results indicate that the rate of subsidence is consistent with the rate of groundwater drop so that in the southern part which corresponds to the Badr and Parishan slopes, the rate was less than 10 millimeters during the period of 2017.12.19 to 2016.01.11. The results of the SBAS method indicate that the study area had subsidence of 216 mm during the 2 years and also a 61 mm uplift. Based on the final result, the highest rate of subsidence was related to the eastern and western parts of Qorveh plain and on the outskirts of the city of Dezaj and the villages of Ghasem-Abad, Shokuh-Abad, Avangan, Ganji, and others. A series of the aforementioned factors suggests that the Qorveh plain subsides about 20 centimeters per year. This is due to the over-exploitation of the groundwater. Unlike some areas where the displacement (subsidence and uplift) is due to the tectonic conditions, the results of this study have shown that in the Qorveh plain, the subsidence has a direct relationship to the drop of the groundwater. Therefore, it is necessary to monitor the use of groundwater, especially in the agricultural sector, and the rate of the exploitation should be proportional to the amount of recharge because in addition to the water shortage problems, the continuous use of the groundwater can lead to the irreversible risks of subsidence.

Keywords

1 - انگورانی، معماریان، شریعت پناهی، بلورچی؛ سعید، حسین، مسعود، محمدجواد (1394)، مدل‌­سازی پویای فرونشست دشت تهران، مجله علوم زمین، سال بیست و پنجم، شماره 97، صفحه 211 تا 220.
2 - بابایی، موسوی، روستایی؛ سیدساسان، زهرا، مه‌آسا؛  (1395)؛ آنالیز سری زمانی تصاویر راداری با استفاده از روش‌­های طول خط مبنای کوتاه (SBAS­) و پراکنش ­کننده‌­های دائمی (­PS­) در تعیین نرخ فرونشست دشت قزوین، نشریه علمی- پژوهشی علوم و فنون نقشه‌برداری، دوره پنجم، شماره 4.
3 - پیری، رحمانی؛ حامد، ابوالفضل (1395)، بررسی میزان فرونشست شمال دریاچه ارومیه با استفاده از روش تداخل سنجی راداری اینترفرومتری InSAR (مطالعه موردی: دشت تسوج)، کنفرانس بین‌المللی پیامدهای جغرافیایی و اثرات زیست‌محیطی شرایط دریاچه ارومیه.
4 - حقیقت‌‌ مهر، ولدان ‌زوج، تاجیک، جباری، صاحبی، اسلامی، گنجیان، دهقانی؛ پریسا، محمدجواد، رضا، سعید، محمودرضا، رضا، مصطفی، مریم (1391)، تحلیل سری زمانی فرونشست هشتگرد با استفاده از روش تداخل سنجی راداری و سامانه موقعیت‌یابی جهانی، مجله علوم زمین، سال 22، شماره 85، صص 114-105.
5 - شریفی کیا، محمدرضا (1391)، تعیین میزان و دامنه فرونشست زمین به کمک روش تداخل‌سنجی راداری (D-InSAR) در دشت نوق- بهرمان، مجله برنامه‌ریزی و آمایش فضا، دوره 16، شماره 3، صص 77-55.
6 - علایی طالقانی، محمود (1383)، ژئومورفولوژی ایران، انتشارات قومس، چاپ سوم، تعداد صفحات 388.
7 - گروسی، لیلا (1395)، امکان‌سنجی توسعه‌ اراضی زراعی با توجه به ویژگی‌های ژئومورفولوژیکی (مطالعه موردی شهرستان قروه)، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، دانشکده جغرافیا.
8 - گنجائیان، حمید (1395)، هیدروژئومورفولوژی و پایداری آبراهة‌ حوضه رود شور با مدیریت اهداف توسعه شهری، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، دانشکده جغرافیا.
9 - میرشاهی، ولدان زوج، دهقانی، هاشمی امین‌آبادی؛ فاطمه‌السادات، محمدجواد، مریم، سیدجواد (1392)، اندازه‌گیری فرونشست سطح زمین به کمک تکنیک تداخل سنجی راداری با استفاده از تصاویر TerraSAR-X، بیستمین همایش ژئوماتیک، سازمان نقشه‌­برداری، تهران.
10. Agustan, A., Sulaiman, A., Ito, A (2016), Measuring Deformation in Jakarta through Long Term Synthetic Aperture Radar (SAR) Data Analysis, 2nd International Conference of Indonesian Society for Remote Sensing (ICOIRS).
11. Bates, R.L. and J.A. Jackson (1980), Glossary of Geology (Second edition): Falls Church, Virginia. American Geological Institute, 749 p.
12. Chaussard, E., Amelung, F., Abidin, H., & Hong, S.-H (2013), Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction Remote Sensing of Environment 128(0), pp 150-161.
13. Daniel, R. C., Maisons, C., Carnec, S., Mouelic, L., King, C. & Hosford, S (­2003), Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) Comparison with ground-based measurement, Remote Sensing of Environment, 88: 468-478.
14. Declercq, P.,  Walstra, J., Gérard, P., PirardM E., Perissin, D., Meyvis, B., Devleeschouwer, X (2017), A Study of Ground Movements in Brussels (Belgium) Monitored by Persistent Scatterer Interferometry over a 25-Year Period, Geosciences 7040115
15. Dinh Ho. T. M., Le. V. T., Thuy. L. T (2015), Mapping Ground Subsidence Phenomena in Ho Chi Minh City through the Radar Interferometry Technique Using ALOS PALSAR Data, Remote Sens, 7, 8543-8562
16. Du, Y., Feng, G., Peng, X., Li, Z (2017), Subsidence Evolution of the Leizhou Peninsula, China, Based on InSAR Observation from 1992 to 2010, Appl. Sci. 2017, 7, 466; doi:10.3390/app7050466
17. Ge, L., Chang, H.C., Rizos, C (2007), Mine subsidence monitoring using multi-source ‌satellite SAR images. Photogramm. Eng. Remote Sens. 73, 259–266.
18. Hanssen, R. F (2001), Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht. Kluwer Academic Publishers.
19. Hay-Man,A., Chung, H Ge, L., Rizos, Ch., Omura, M (2009), Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining, Earth Planets Space, 61, 733–745
20. Hua, R. L., Z. Q. Yueb, L. C. Wanga & S. J. Wang (2004), “Review on Current Status and Challenging Issues of Land Subsidence in China”, Elsevier Science-Engineering Geology, Vol. 76, Pp. 65-77