ارزیابی پتانسیل تصاویر سنجنده OLI در تفکیک شش رقم گندم ایرانی با استفاده از کتابخانه ی طیفی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد سنجش از دور، دانشکده مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشیار گروه فتوگرامتری و سنجش از دور، دانشکده مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 استادیار گروه فتوگرامتری و سنجش از دور، دانشکده مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

تهیه‌ی اطلاعات مربوط به سطح زیر کشت گندم و میزان محصول آن، تأمین‌کننده‌ی مدیریت موفق و پایدار در سیاست‌گذاری‌های اقتصادی برای این کالای راهبُردی می‌باشد. بررسی بازتاب طیفی گیاهان با استفاده از طیف‌سنجی میدانی و تشکیل کتابخانه‌ی طیفی امکان تفکیک ارقام مختلف گندم و تهیه‌ی نقشه‌ی پراکندگی آن‌ها را افزایش می‌دهد. به همین منظور منحنی رفتار طیفی مربوط به شش رقم گندم به نام‌های بهار، چمران، پیشتاز، شیراز، شیرودی و یاواروس در مزرعه‌ی مؤسسه‌ی تحقیقات اصلاح و تهیه نهال و بذر کرج در سه مرحله‌ی رویشی اندازه‌گیری شدند. مشاهدات توسط دستگاه طیف‌سنج میدانیASD FieldSpec®3 در نور و شرایط طبیعی اخذ گردیدند. در مرحله‌ی پیش‌پردازش سه محدوده‌ی نویزی متأثر از بخار آب، شناسایی و حذف شدند. سپس به منظور کیفی سازی داده‌های جمع‌آوری شده با استفاده از روش‌های آماری مشاهدات اشتباه کنار گذاشته شدند. این پژوهش در دو گام اصلی طراحی و اجرا شد. در گام اول تابع پاسخ طیفی سنجنده‌ی OLI که بر روی ماهواره‌ی لندست 8 نصب شده است، بر روی طیف‌های کتابخانه اعمال گردید. سپس با استفاده از معیارهای شباهت طیفی و بیست و هفت شاخص گیاهی مهم حساس به غلظت کلروفیل، شدت فتوسنتز، نیتروژن و میزان آب موجود در تاج گیاه و غیره، حد نهایی تفکیک‌پذیری ارقام گندم مورد مطالعه، برآورد شد. در گام دوم با انجام بازدید میدانی از منطقه‌ی مورد مطالعه و اخذ تصاویر ماهواره‌ای سنجنده‌ی مورد نظر با استفاده از طیف‌های کتابخانه‌ی طیفی، طبقه‌بندی مزارع شناسایی‌شده، صورت گرفت. نتایج حاصل تفکیک‌پذیری قابل‌ملاحظه‌ی رقم گندم یاواروس را از سایر ارقام، هم در طیف‌های میدانی و هم در تصاویر ماهواره‌ای نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of OLI Sensor Images Potential in the Separation of six Iranian WheatVarieties Differentiation using Spectral Library

نویسندگان [English]

  • Behnam Bigdeli 1
  • Mohammad Javad Valadan zoj 2
  • Yaser Maghsoudi Mehrani 3
1 M.S. in remote sensing, faculty of geomatic, Khaje Nasir Toosi University
2 Associate professor of photogrammetry and remote sensing faculty of geomatic, Khaje Nasir Toosi University
3 Assistant professor of Photogrammetry and remote sensing , faculty of geomatic, Khaje Nasir Toosi University
چکیده [English]

Collecting information on the areas under cultivation of wheat and the amount of its products provides the successful and sustainable management in the economic policy-makingfor this strategic product. Introduction of high spectral and special resolution satellite data has enabled the production of such information in a timely and accurate manner. Investigating the spectral reflection of plants using field spectrometry and forming a spectral library increases the possibility of differentiating various wheat cultivars and preparing their distribution map. For this purpose, the spectral behavior curves for 6 wheat cultivars named Bahar, Chamran, Pishtaz, Shiraz, Shiroodi and Yavaros, were measured at three stages of growth at the ‘Research Institute of Seed and plant improvement " of Karaj in Iran. Observations were obtained by the ASD FieldSpec®3 Field Spectrometerin the range of 350-2500 nm wavelength under natural light and natural conditions. In the pre-processing stage, three noisy ranges affected by water vapor were detected and eliminated to enhance the gathered data quality. Then,in order to qualitatively collect the data, wrong observations were excluded using statistical methods. This research was designed and implemented in two main steps. In the first step, the spectral response function of the OLI sensor installed on the Landsat 8 satellite was applied to the library's spectra. Then, using the spectral similarity criteria and the twenty seven important vegetation indices sensitive to chlorophyll concentration, photosynthesis intensity, nitrogen and water content in the crown of the plant, etc., the extreme final resolution of wheat cultivars under study, was estimated.In the second step, the classification of the identified farms was carried out by conducting a field survey of the studied area and obtaining satellite images of the target sensor using spectral library spectra. The results showed a significant separabilityof Yavarus wheat variety from other cultivars, both in field spectra and satellite images.

کلیدواژه‌ها [English]

  • Field Spectrometry
  • Iranian wheat Varieties
  • Vegetation index
  • Spectral Similarity
  • OLI Images

1- Aboelghar, M.A., Arafat, S.M., Eslam, F.A. (2013). Hyper Spectral Measurements as a Method for Potato Crop Characterization. International Journal of Advanced Remote Sensing and GIS. Volume 2, Issue 1, pp. 122-129, Article ID ISSN 2320-2-02403.

2- Arafat, S.M., Aboelghar, M. A., Eslam, F.A. (2013). Crop Discrimination Using Field Hyper Spectral Remotely Sensed Data. Advances in Remote Sensing. 2, 63-70.

3-  Chang, C.I. (2000). An information theoretic-based approach to spectral variability, similarity and discriminability for hyperspectral image analysis. IEEE Trans. Information Theory, 46, 1927-1932.

4- Chen, J.M. (1995). Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed the boreal conifer forests. IEEE Trans. Geosci. Remote Sens.(submitted).

5- Crippen, R.E.(1990).Calculating the vegetation index faster. Remote Sensing of Environment,34,pp.71-73.

6- Darvishsefat, A.A., Abbasi, M., Schaepman, M. E. (2011).Evaluation of Spectral Reflectance of Seven Iranian Rice Varieties Canopies.  J. Agr. Sci. Tech. Vol. 13: 1091-1104.

7- Du, Y., Chang, C.I., Ren, H., Chang, C.C., Jensen, J.O., D’Amico, F.M. (2004). New hyper-spectral discrimination measure for spectral characterization. Opt. Eng. 43,1777-1786.

8-Escadafal, R., Huete, A.R. (1991). tude des propriétés spectrales des sols arides appliquée à lamélioration des indices de vegetation obtenus par télédection. CR Acad. Sci. Paris 312, 1385-1391.

9- FieldSpec®  3 User Manual.(2010). ASD Inc. ASD Document 600540 Rev.

10- Gamon, J. G., Surfus, J. S.(1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist 143:105-117.

11- Goel, N.S., Qi, W. (1994) Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation. Remote Sensing Reviews, 10, 309-347.

12- Gong, P., Pu, R., Biging, G.S.; Larrieu, M.R. (2003). Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 41, 1355-1362.

13- Gower, J.C.1985,.Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra and its Applications, 67, 81-97.

14- Gitelson, A.A., Kaufman, Y.J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment. 80, 87-76

15- Gitelson, A.A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 2691-2697

16-Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337-352.

17- Hardisky M.A., Klemas, V., and Smart, R.M. (1983). The influence of soilsalinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing 49, 77-83.

18- Huete, A.R. (1988). A soil-adjusted vegetation index. Remote Sensing of Environment. 25. 295-307.

19- Jordan, C.F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology50. 663-666.

20- Kruse, F., et al.(1993). The spectral image processing system (SIPS) – interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44, 145-163.

21- Merton, R., & Huntington, J.  (1999). Early simulation results of the ARIES-1 satellite sensor for multi temporal vegetation research derived from AVIRIS. Available at ftp://popo.jpl.nasa.gov/pub/docs/workshops/ 99_docs/41.pdf (verifi ed 8 Apr. 2008). NASA Jet Propulsion Lab., Pasadena, CA.

22- Pearson, R.L., Miller, L.D. (1972). Remote Mapping of Standing Crop Biomass and Estimation of the Productivity of the Short Grass Prairie, Pawnee National Grasslands, Colorado. In Proceedings of the 8th International Symposium on Remote Sensing of the Environment, Ann Arbor, MI, USA, pp.1357-1381.

23-  Pinty, B. & Verstraete, M.M. (1992) GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio, 101: 15-20.

24- Qi, J., Chehbouni, A., Huete, A. R., & Kerr, Y. H. (1994). Modified Soil Adjusted Vegetation Index (MSAVI). Remote Sensing of Environment, 48, 119-126.

25- Rao, N.R., Zbell, B. (2011a). Use of field reflectance data for crop mapping using airborne hyperspectral image. ISPRS Journal of Photogrammetry and Remote Sensing. 66 683-691.

26- Rao, N.R., Zbell, B. (2011b).Transferring spectral libraries of canopy reflectance for crop classification using hyperspectral remote sensing data. biosystems engineering 110 231e246.

27- Rondeaux, G., Steven, M., & Baret, F Optimization of soil -adjusted vegetation index. Remote Sensing of Environment, 24, 109-127.

28- Roujean,Jean-Louis  and  Breon,Francois-Marie. (1995). Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. REMOTE SENS. ENVIRON.51: 384-375.

29- Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W.,Harlan, J.C. (1974).  Monitoring the Vernal Advancements and Retrogradation (Greenwave Effect) of Nature Vegetation; NASA/GSFC Final Report; NASA: Greenbelt, MD, USA.

30- Swain, P.H., Robertson, T.V., Wacker, A.G. (1971). Comparison of the Divergence andB-Distance in Feature Selection. LARS Report. Purdue University.

31- Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127-150.

32- Van Aardat, J. A. N. (2000). Spectral separability among six southern tree species. MSc Thesis,Virginia polytechnic institute and state university Blacksburg, USA. Pp184.

33- Van den Berg, A.K., & T.D. Perkins. (2005). Nondestructive estimation of anthocyanin content in autumn maple leaves. HortScience 40:685-686

34- Van der Meer, F. & Bakker, W. (1997). Cross correlogram spectral matching (CCSM): application to surface mineralogical mapping using AVIRIS data from Cuprite, Nevada. Remote Sensing of Environment61. 371-382.

35- Zomer, R.J., Trabucco, A., Ustin, S.L. (2009). Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. Journal of Environmental Management. 90 ,2170e2177.