روش تحلیل سلسله مراتبی فازی در سامانه اطلاعات مکانی به منظور تعیین نقاط بهینه حفاری در کانسار مس پرفیری نیسیان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد؛گروه مهندسی اکتشاف معدن، دانشکده مهندسی معدن، دانشگاه تهران

2 عضو هئیت علمی گروه اکتشاف؛ دانشکده مهندسی معدن؛ پردیس دانشکده های فنی؛ دانشگاه تهران

3 دانشجوی دکترای اکتشاف معدن؛ دانشگاه سانتیاگو؛ شیلی

چکیده

به دلیل پرهزینه و زمان بر بودن عملیات حفاری و نیز ریسک بالای آن در اکتشاف مواد معدنی این مرحله از اهمیت به سزایی برخوردار است. به منظور تعیین نقاط بهینه حفاری، تهیه نقشه پتانسیل معدنی با استفاده از سامانه اطلاعات مکانی برای تلفیق کلیه فاکتورهای اکتشافی امری ضروری می باشد. روش‌های مختلفی برای تهیه نقشه پتانسیل‌یابی تاکنون توسعه یافته است. یکی از موثرترین آنها با توجه به طبیعت پدیده‌های زمین‌شناسی و معدنی؛ روش سلسله مراتبی در ترکیب با منطق فازی است. در این تحقیق از روش ترکیبی متشکل از سلسله مراتبی و فازی که تحت عنوانسلسله مراتبی فازی(AHP Fuzzy)؛ بهره گرفته شده است. در این بررسی از فناوری سامانه اطلاعات مکانی به عنوان یکی از مؤثرترین ابزارها برای مدیریت داده و اطلاعات اکتشافی برای تلفیق داده‌های مختلف جهت تهیه نقشه پتانسیل معدنی بهره گرفته شده است. در این پژوهش؛ کانسارمس پرفیری نیسیان به عنوان مطالعه موردی استفاده شده است. زیرا این کانسار در استان اصفهان در کمربند ولکانیکی ارومیه-دختر کشور؛ در حال مطالعه اکتشافی بوده و بعلت پیچیدگی‌های زمین‌شناسی و معدنی؛ تعیین بهینه محل‌های حفاری جهت مطالعات تفصیلی از حساسیت قابل توجهی برخوردار است. به منظور تهیه نقشه فاکتور زمین‌شناسی؛ ژئوشیمی از داده‌های موجود بهره گرفته شده است. برای محاسبه وزن لایه‌های اکتشافی از فرآیند سلسله مراتبی فازی استفاده می شود. در راستای اجرای دقیق از متخصصان زمین‌شناسی و ژئوشیمی بهره گرفته می‌شود. در فرآیند تلفیق لایه‌های اطلاعاتی حاصله از عملگرهای فازی استفاده می‌شود. برای ارزیابی و اعتبارسنجی نقشه پتانسیل معدنی حاصله؛ از گمانه‌های اکتشافی استفاده می‌شود. مقایسه نقشه پتانسیل تولید شده با گمانه‌ها نشانگر انطباق معنادار و مثبت بین آنها است. در این راستا نقاط پیشنهادی برای حفاری‌های مورد نیاز ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Fuzzy AHP method in GIS for determining the optimal drilling points in the Naisian Porphyry Copper mine

نویسندگان [English]

  • Hojat Shirmard 1
  • Abbass Bahroudi 2
  • Amir Adeli 3
1 Ms Student in mine engineering, faculty of mine engineering University of Tehran
2 Assistant professor of mine engineering, faculty of mine engineering University of Tehran
3 Student of mine engineering Santiago University
چکیده [English]

Due to the costly and time consuming drilling operations andits high risk of mineral exploration, this stage is of great importance.In order to determine optimum drillingpoints, it is essential to prepare a mineral potential map using the Geographic Information System(GIS), to integrate all exploratory factors.Various methods have been developed for preparing the potential mapso far. One of the most effective ones, considering the nature of the geological and mineral phenomena, is the hierarchical method (AHP) in combination with fuzzy logic.In this research, a combined method consisted of hierarchical and fuzzy methods has been used under the name of fuzzy analytic hierarchy (FAHP). In this study, GIS technology has been used as one of the most effective tools for data and exploratory information management for the integration of various data in order to prepare the mineral potential map. In this research, the Naysian Porphyry copper deposit was used as a case study, because this mine, located in Isfahan province on the Uromieh-Dokhtar Volcanic belt of the country, has been under exploratory study, and because of the geological and mineral complexities, the optimal location of drilling sites has a significant sensitivity for detailed studies.The main purpose of this study is to determine the optimum drilling location using FAHP methods. To produce geological, geochemical factor maps, all available data of the Naysian copper deposit have been collected and analyzed. Fuzzy hierarchical process is used to calculate the weight of exploration layers and to implement this precisely, the geological and geochemical experts are used. In the process of integrating the resulting information layers in the GIS, fuzzy operators are used, and to evaluate and validate the obtained mineral potential map, the exploratory boreholes are used. Comparing the generated potential map with the boreholes shows a significant and positive adaptation between suggested drilling locations resulted from this study and the previous drillings. In this regard, the proposed points for the required drilling are provided.

کلیدواژه‌ها [English]

  • Geographic Information System
  • Drilling
  • Data Integration
  • Copper Deposit
  • Analytic Hierarchy
1- Agterberg F. P. and Bonham-Carter G.F.; 1999: Logistic regression and weights of evidence modeling in mineral exploration. In: Proc. 28th Int. Symp. App. Comput. Mineral Ind. (APCOM), Golden, CO, USA, pp. 483-490.

2- Bonham-Carter G.F.; 1994: Geographic information systems for geoscientists: modelling with GIS. Pergamon Press, Oxford, UK, 398 pp.

3- Bonham-Carter G.F., Agterberg F. P. and Wright D.F,1989,. Weights-of-evidencemodelling: a new approach to mapping mineral potential. In: Agterberg F.P. and Bonham-Carter G.F. (eds), Stat. Appl. Earth Sci., Geol. Surv. Canada, Paper 89-9, pp. 171-183.

4- Carranza E.J.M.; 2008: Geochemical anomaly and mineral prospectivity mapping in GIS. Handb. Explor. Environ. Geochem., Elsevier, Amsterdam, Netherland pp.368.

5- Carranza E.J.M., 2009.Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol. Rev., 35, 383-400.

6- Celik,M., Er,I.D, Ozok,A.F,2009. Application of fuzzy extended AHP methodology on shipping registry selection‌: The case of Turkish maritime industry. Expert Systems with Applications 36,190-198.

7- Chang D.Y: 1996: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res., 95, 649-655.

8-Chung C. F. and Moon W.M.,  1990. Combination rules of spatial geoscience data for mineral exploration. Geoinformat., 2, 159-169.Porwal, A., 2006- Mineral Potential Mapping with Mathematical Geological Models, PHD thesis.

9- Duran, O., Aguilo, J., 2008. Computer-aided machine-tool selection based on a Fuzzy-AHP approach‌. Expert Systems with Applications 34, 1787-1794.

10- Hotelling, H., 1933. “Analysis of a Complex of Statistical Variables into Principal Components”, Journal of Educational Psychology, Vol. 24(7), p. 498-520.

11- Karimi A.R., Mehrdadi N., Hashemian S.J., Nabi-Bidhendi G.R. and Tavakkoli-Moghaddam R 2011:Using of the fuzzy TOPSIS and fuzzy AHP methods for wastewater treatment process selection. Int. J. Acad. Res., 3, 780-786.

12- Pan G.C. and Harris D.P., 2000: Information synthesis for mineral exploration. Oxford University Press, New York, NY, USA, 461 pp.

13- Nykänen V. and Salmirinne H. 2007, Prospectivity analysis of gold using regional geophysical and geochemical data from the central Lapland Greenstone belt, Finland. Geol. Surv. Finland, Special Paper, , 44. 251-369.

14- Moon W.M.; 1990. Integration of geophysical and geological data using evidential belief function. IEEE Trans. Geosci. Remote Sens. 28, 711-720.

15- Wang, L., Chu, J., Wu, J, 2007.Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. international journal of production economics 107 , 151-163 .

16-Zarnab Consulting Engineers Co.1989. Geological-alteration study report, scale 1:1000Tehran, Iran