آنالیز سری زمانی موقعیت ایستگاه دائمی GPS با استفاده از اتورگرسیو میانگین متحرک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئودزی، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشگاه تهران

2 دانشیار گروه ژئودزی، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشگاه تهران

چکیده

هدف اصلی مقاله حاضر، استفاده از مدلهای احتمال اتورگرسیو میانگین متحرک(ARMA) به منظور مدلسازی سری زمانی موقعیت روزانه ایستگاه دائمی GPS میباشد. موقعیتهای روزانه ایستگاه دائمی LLAS در منطقه کالیفرنیای جنوبی از شبکه SCIGN با پوشش زمانی هفت سال از ژانویه 2000 تا دسامبر 2006 جهت ایجاد سری زمانی موقعیت و آنالیز آن انتخاب گردیده است. براساس سری زمانی موقعیت روزانه و استفاده از روش کمترین مربعات وزندار، پارامترهای ژئودتیکی مانند: ترند خطی، نوسانات سالیانه و نیم سالیانه و نیز آفستها به طور همزمان برای ایستگاه دائمی LLAS برآورد شدهاند. در این مطالعه، توابع خود همبستگی(ACF) و خودهمبستگی جزئی(PACFبه عنوان ابزارهای مطالعاتی برای شناسایی رفتار سری زمانی موقعیت روزانه ایستگاه دائمی GPS مورد استفاده قرار میگیرند و امکان بررسی وابستگی دادههای روزانه سری زمانی موقعیت را فراهم مینمایند. با توجه به اینکه ممکن است چند مدل احتمالاتی متفاوت برای یک سری زمانی موقعیت روزانه مناسب باشند، لذا محک اطلاعات آکاییک در مرحله شناسایی و انتخاب مدل مفید، مورد استفاده قرار گرفته است.در این مطالعه، نتایج عددی نشان میدهند که بهترین مدل احتمالاتی اتورگرسیو میانگین متحرک برای ایستگاه دائمی LLAS از مرتبه (1,1) برای جهت  N میباشد. همچنین مدل احتمالاتی (ARMA(2,1 برای جهت E مناسب ترین مدل میباشد در حالی که برای جهت U مدل احتمالاتی (ARMA(1,2 بهترین مدل است. بعد از برآورد یک مدل احتمالاتی مناسب برای سری زمانی موقعیت روزانه ایستگاه دائمی GPS، میتوان آن سری زمانی موقعیت را همراه با  ترند و مؤلفههای فصلی پیشبینی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Time series analysis of the position of GPS permanent station using Auto Regressive Moving Average (ARMA) technique

نویسندگان [English]

  • Fereydoon Nobakht Ersi 1
  • Abdolreza Safari 2
  • Mohammad Ali Sharifi 2
1 Ph.D student of geodesy, Faculty of Engineering, University of Tehran
2 Associate professor of Surveying and Geospatial Engineering, Faculty of Engineering, University of Tehran
چکیده [English]

The main purpose of the present paper is to use the ARMA probability models to model the time series of the daily positions of GPS permanent station.Daily Locations of the LLAS permanent station in the Southern California region have been selected from the SCIGN network, covering a period of seven years from January 2000 to December 2006, to establish a time series of position and to analyze it. Based on the time series of the daily position and using the weighted least squares, the geodetic parameters such as linear trend, annual and semi-annualfluctuations, as well as offsets,have been simultaneously estimated for the LLAS permanent station. In this study, Auto correlation Functions (ACF) and Partial Auto Correction functions (PACF) are used as the study tools for identifying the time series behavior of daily position of GPS permanent station and provide the possibility to examine the dependency of the position time series daily data. Given that several different probabilistic models may be appropriate for a daily position time series, therefore,the Akaike Information Criterion has been used at the stage of identifying and selecting the useful model. In this study, numerical results show that the best autoregressive moving average (ARMA) probabilistic model for the LLAS permanent station is ARMA (1, 1) for direction N. Also, the ARMA (2, 1) probabilistic model is the most appropriate model for direction E, while the ARMA (1, 2) probabilistic model is the best model for direction U. After estimating an appropriate probabilistic model for the time series of the daily position of the GPS permanent station, it is possible to predict the time series of the position along with the trend and seasonal components.

کلیدواژه‌ها [English]

  • Time Series
  • GPS
  • Akaike Information Criterion
  • ARMA
  • Auto Correlation Function

1-  C.Chatfield, The analysis of time series: an introduction. Chapman & Hall press, 1989.

2-  F.Norman Teferle, S.D.P.Williams, H.P.Kierulf, R.M.Bingley, and H,P.Plag, “A continuous GPS coordinate time series analysis strategy for high accuracy vertical land   movements’’, Science Direct, 2008, pp.205-216.

3-  J.Li, K.Miyashita, Kato,T. and Sh.Miyazaki, “GPS time series modeling by autoregressive moving average method: Application to the crustal deformation in central Japan’’, The Society of Geomagnetism and Earth Planetary and Space  Sciences (SGEPSS), 1999.

4-  J.Li, K.Miyashita, P.Ivan, and H.Torimoto, “Crustal strain field in central Japan based on the wavelet          analyzed GPS time series data’’, 2002, pp.10-15.

5- R.Nikolaidia, “Observation of Geodetic and Seismic Deformation with the Global Positioning System’’, PhD Thesis, University of California, San Diego, 2002.

6- S.Bergstrand, H.G.Scherneck, M. Lidberg, and J.M.Johansson, “BIFROST: Noise properties of GPS time series’’,  presented at the IAG Symposium, 2005.

 7- Y.Zhang, A.I.McLeod, “Fitting MA(q) models in the closed invertible region”, Elsevier B.V., 2006.