ارائه یک رویکرد ترکیبی برپایه ی تئوری مجموعه ناهموار- درخت تصمیم در پایش تغییرات کاربری اراضی با استفاده از تصاویر سنجنده ی TM (مطالعه موردی: شهرستان شوشتر)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه جغرافیای انسانی، دانشکده جغرافیای دانشگاه تهران

2 استاد گروه جغرافیای انسانی، دانشکده جغرافیای دانشگاه تهران

3 دانشجوی دکتری گروه جغرافیای انسانی، دانشکده جغرافیای دانشگاه تهران

چکیده

با پیشرفت علم و تکنولوژی، حجم زیادی از دادههای فضایی و غیرفضایی در پایگاه دادههای بزرگ ذخیره میشوند. تحلیل این دادهها به منظور تصمیمگیری نیاز به داده کاوی فضایی را بطور جدی برای کشف دانش ضروری میسازد. بکارگیری تصاویر ماهوارهای، تحلیل زمین آماری و انواع دادههای فضایی در مطالعات پایش تغییرات کاربری اراضی ابزاری مفید و کاربردی هستند؛ اماآنچه در این میان مهم است استخراج قواعد دقیق بواسطه ادغام مقادیر دادههای زیاد به منظور فراهم ساختن دانش درباره قلمرو مورد بحث است. تئوری مجموعه ناهموار (RST) یکی از تکنیکهای داده کاوی است که بطرق گوناگون در مدلسازی عدم قطعیت در دادهها استفاده میگردد. از اینرو در این پژوهش، روش کشف دانش RST بمنظور استخراج قواعد در ترکیب با الگوریتم درخت تصمیم (DT) برای طبقهبندی تصاویر ماهوارهای و پایش تغییرات کاربری اراضی مورد استفاده قرار میگیرد. نتایج تحقیق حاکی از آن است که با توجه به تغییرات بوقوع پیوسته طی سه دوره زمانی 6891 (5631)، 8991 (7731) و 4102 (3931) میتوان دریافت که تغییرات افزایشی و کاهشی چشمگیری بترتیب در اراضی ساخت شده و پهنههای آبی اتفاق افتاده است؛ در حالیکه اراضی کشاورزی تغییرات چندانی نداشته است. البته با توجه به سال پایه (6891) می توان بیان داشت که سطح زیرکشت اراضی کشاورزی منطقه نسبت به سال پایه که همزمان با جنگ تحمیلی بوده است تغییرات اندکی را شاهد بوده و این یعنی که طی سه دهه گذشته سطح زیرکشت به مانند دوره جنگ تحمیلی است. این امر بیانگر بحرانی است که در بخش کشاورزی در حال اتفاق افتادن است. همچنین نتایج به لحاظ متدولوژی با توجه به صحت کلی و آماره کاپا حاصل از مدل ترکیبی  DT-RST میتوان گفت که RST ابزاری قدرتمند در داده کاوی، تقلیل دادههای زائد از پایگاه دادهها و استخراج قواعد برای بکارگیری در روش DTمیباشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Presenting a combined approach based on the rough set theory of decision tree in monitoring land use changes using TM sensor images (Case study: Shushtar City)

نویسندگان [English]

  • Hasanali Faraji Sabokbar 1
  • Seyyed Hasan Motiee Langroodi 2
  • Hossein Nasiri 3
1 Associate professor, department of human geography, faculty of geography, University of Tehran, Tehran, Iran
2 Professor, department of human geography, faculty of geography, University of Tehran, Tehran, Iran
3 Ph.D student department of human geography, faculty of geography, University of Tehran, Tehran , Iran
چکیده [English]

Abstract
With the development of science and technology, a large amount of spatial and non-spatial data are stored on large databases. Analyzing these data for decision making necessitates the need for spatial data mining to discover knowledge. The use of satellite imagery, geo-statistical analysis, and all types of spatial data are useful and practical tools in studying land use change monitoring; but, what is important is the extraction of precise rules by integrating large amounts of data in order to provider knowledge about the area of interest. Rough Set Theory (RST) is one of the data mining techniques used in various ways in modeling uncertainty in data. Therefore, in this research, the RST knowledge discovery method is used to extract rules in combination with decision tree algorithm (DT) for satellite image classification and monitoring of land use changes. The results of the research indicate that according to the changes occurred during three periods of (1986-1998, 1998-2014 and 1986-2014), it can be seen that significant increasing and decreasing changes have occurred in the constructed lands and in the water bodies, while agricultural lands have not changed much. Of course, considering the base year (1986), it can be stated that the area of the agricultural lands under cultivation has witnessed a slight change compared to the base year which coincided with the imposed war, which means that the area under cultivation during the past three decades has been the same as that of the war period. This indicates that, the crisis is taking place in the agricultural sector. Also, in terms of methodology, given the overall accuracy and Kappa ratio, derived from the DT-RST combination model, RST can be considered to be a powerful tool in data mining, reducing the redundant data from databases and extracting rules for use in the DT method.

کلیدواژه‌ها [English]

  • Land use changes monitoring
  • Rough Set Theory
  • Knowledge Discovery
  • Decision tree
  • Shushtar

1.   رکن الدین افتخاری، بدری و سجاسی قیداری؛ عبدالرضا، سیدعلی و حمدالله، 1390، بنیان‌های نظریه‌ای برنامه‌ریزی کالبدی مناطق روستایی، نشر بنیاد مسکن انقلاب اسلامی.

2.   محمدی و شیخ؛ عفت و رضا؛ 1392، تحلیل خطای هاله‌ای رفتار مشتریان با استفاده از شاخص مروجان خالص (NPS) و تئوری مجموعه راف (RST)، مطالعه‌ی موردی: تلفن همراه سونی اریکسون، مجله مدیریت بازرگانی، شماره 1: 119-142.

3. Brodle, C.E., T.Lane, and T.M. Stoug (1999).  Knowledge Discovery and Data Mining, American Scientist, 87, 54-61.

4. Bruy S.M & j Opschoor, (1994) is the economy  ecologising? Discussion paper, TJ9 4-65 Tinbergen institute Amsterdam.

5. Cheng C.H. & Chen Y.S. (2009) . Classifying the segmentation of customer value via REM model and RS theory. Expert  Systems with Applications, 36 (3), 4176-4184.

6. Cheng, C.H., Chen, T,L., & Wei,L.Y., (2010) hybrid model based on rough sets theory and genetic algorithms for stock price forecasting. Information Sciences, 180(9), 1610-1629.

7. FAO, (1976). A Framework for Land Evaluation, F.A.O soils bulletin. Pb No. 32, Rome.

8. HanseM., R. Dubayah, and R. Defrie (1996). Classification trees: an alternative to traditional  land cover classifiers, International Journal of Remote Sensing, 17, 1075-1081.

9. Huang, C.L., Li, T.S., Peng, T.K., (2005). A hybrid approach of rough set theory and genetic algorithm for fault diagnosis, Int Adv Manuf Technol, 27: 119-127.

10. Jiang, Q., and H. Liu (2004). Extracting Image Information Using Texture Analysis Journal of Remote Sensinr, 8(5), 459-464.

11. Kruger B, Reed MS, Fazey I, Stringer LC, Raymond CM, Akhtar - Schuster M, Begni G, Bigas H, Brehm S, Briggs J, Bryce R, Buckmaster S, Chanda R, Davice J, Diez E, Essahli W, Evely A, Geeson N,Hartmann I, Holden J, Hubacek K, Ioris AAR, Laureano P, Phillipson J, Prell C, Quinn CH, Reeces AD, Seely M, Thomas R, Van Der Werff Ten Bosch MJ, Vergunst P, Wagner L., (2013). Knowledge management for land degradation monitoring and assessment: an analysis of contemporary thinking. Land Degrad Dev 24:307-322.

12. Lawrencr, R.L., and A. Wright (2001). Rule - Based Classification systems using classification and regression tree (Cart) analysis, Photogrammetric Wngineering & Remote Sensing, 67, 1137-1142.

13. Liou J.J.H. Tzeng G.H. (2010). A Dominance - based Rough Set Approach to customer behavior in the airline market. Information Sciences, 180 (11), 2230- 2238.

14- Long, H., Tang, G., Li, X., Heilig, G.K., (2007), Socio-Economic Driving Forces of Land - Use Change in Kunshan, the Yangtze River Delta Economic Area of China. Journal of Environmental Management, 83, 371-364.

15- McFeeters, S.K.(1996). The use of the normalized difference water index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, 17, 1425-1432.

16- Meyer, W.B.,B.L. Yurner II, 1994, change in land use and land cover: a global perspective, Cambridge University Press, Cambridge.

17- Mui, J.K. and K.S. Fu (1980). Automated Classification of Nucleated Blood Cells Using a Binary Tree Classifier, Pattern Analysis and Machine Intelligence, PAMI-2, 429-443.

18- OECD (Organization for Economic Co-operation and Development), (2001). Biodiversity, landscapes and ecosystem services of agriculture and forestry in the Austrian alpine region - an approach to economic (e) valuation. ENV/EPOC/GEFI/BIO (2001) 4, Paris.

19- Ostrom, E., (1990). Is governing the commons, Combridge University Press, Cambridge.

20- Parry M.L., (1990). Climate change and world agriculture, EarthSacan, London.

21- Pavel, J.,& Jius, K., (2007). Classification model based on rough and fussy sets theory. In Proceedings of the 6th WSEAS international conference on Computational intelligence, man-machine systems and cybernetics (pp.198-202). World Scientific and Engineering Academy and Society (WSEAS).

22- Pawlak, Z., (1982). Rough sets, International Journal of Computational Information Science, 341-356.

23- Pawlak, Z., (2001). A Primer on Rough Sets: A New Approach to Drawing Conclusions from Data. In: Cardozo Law Review, Volume 22, Issue 5-6, pp.1407-1415.

24- Pawlak, Z., (2002). Rough sets and intelligent data analusis, Information Sciences, 147:112.

25- Phalke, S & Couloigner, L., (2005). Changes detection of man-made objects using high resolution imagery and GIS data. In proceedingr of the 24-25-27 may, Dubrovnik, Croatia.

26- Richards, J.A., and X. Jia (2006). Remote Sensing Digital Image Analysis: A Introduction, Springer - Verlag, Berlin.

27- Rounds, E.M., (1980). A Combines Monparametric Approach to Feature Selection and Bionary Decision Tree Design, Pattern Recognition, 12, 313-317.

28- S. Elheishy, S., A. Saleh, A., Asem, A., (2013). A Rough Set and GIS Based Approach for Selecting Suitable Shelters during an Evacuation Process, Journal of Geographic information System, 2013, 5, 1-12.

29- Swain P.H., Hauska (1977). The Decision Tree Classifier: Design and Potential, Geoscience Electronics, GE-15, 142-147.

30- Van den Poel D.&Piasta Z.(1998). Purchase prediction in databasemarketing with the ProbRough system. In Rough Sets and Current Trends in Computing (pp.593-600). Springer Berlin / Heidelberg.

31- Vescovi, f, d, park, s. & viek. P.I.G., (2002). Detection of human - induced and cover change in savannah landscape in Ghana: l.change detection and quantification. 2nd workshop of the earsel special interest group on remote sensing for developing countries, 18-20 September, Bonn, Germany.

32- Vogelmann, J.E. (2001). Completion of the 1990s national land cover data set for the conterminous United States from Landsat Thematic Mapper and ancillaty data sources, Photogrammetric Engineering & Remote Sensing, 67, 650-662.

33- Walczak, B., Massart DL (1999).Rough sets theory. Chemonetrics Intell Lab Syst 47 (1): 1-16.

34. Xu,X., Gao,Q., Liu, Y.H., Wang, J.A., Zhang, Y., (2009). Coupling a Land Use Model and an Ecosystem Model for a Crop - Pasture Zone, Ecological Modeling 220, PP. 2503-2511.

35- Yong, Z., NI.Shao-xiang and Y. Shan (2003). An Effective Approach to Automatically Extract Urban Land - use from TM Imagery, Journal of Remote Sensing, 7(1),  pp. 37-40.

36- Ziarko, W., (1993). The Discovery, Analysis and Representation of Data Dependencies in Databases, Knowledge Discovery in Databases. Cammidge, MA: AAAI MIT Press.