بررسی الگوی کشت محصولات کشاورزی با استفاده از سنجش ازدور و سیستم اطلاعات مکانی با رویکرد قطعه مبنا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی گروه نقشه برداری و ژئوماتیک، دانشکده فنی مهندسی، دانشگاه سید جمال الدین اسدآبادی

2 استادیار گروه نقشه برداری و ژئوماتیک، دانشکده فنی مهندسی، دانشگاه سید جمال الدین اسدآبادی

10.22131/sepehr.2021.242860

چکیده

در سالهای اخیر به میزان قابلتوجهی از منابع آب زیرزمینی کاسته شده است. در این شرایط روند کشت محصولات کشاورزی ازنظر اقتصادی توجیهپذیر نیست. چراکه بیش از 80درصد از منابع آبی در بخش کشاورزی مصرف میشود و سالهاست که موضوع بهینهسازی و تغییر الگوی کشت در کشور مطرحشده است.یکی از چالشهایی که در تغییر الگوی کشت میبایست در نظر گرفت، حفظ سطح درآمد کشاورزان و دیگری تأمین نیاز داخل کشور از محصولات تولیدشده است. مهمترین نوآوری این تحقیق ترکیب سنجشازدور و سیستم اطلاعات مکانی، جهت بهینهسازی الگوی کشت بهصورت قطعهمبنا، با در نظر گرفتن دو سناریو برای دشت اسدآباد همدان است. در سناریو اول هدف کمینهسازی مصرف آب و بیشینهسازی درآمد است و در سناریو دوم هدف کمینهسازی مصرف آب و تأمین نیاز داخلی کشور است. علاوه بر توسعه توابع هدف، محدودیتهایی مانند نوع محصول زیر کشت، قطعهمبنا بودن، محدودیت تناوب و نیاز داخلی مدلسازی شدند. با در نظر گرفتن دو تابع هدف یک الگوریتم پیشنهادی جهت بهینهسازی الگوی کشت ارائه شده و نتایج در قالب آن پیادهسازی شده است. نتایج نشان میدهد، در هردو سناریو میزان مصرف آب برای دشت اسدآباد حدود 50% کاهش داشته است و درآمد کشاورزان تنها حدود 10% کاهش خواهد داشت. با در نظر گرفتن این موضوع که کشاورزی پایدار نیاز به کاهش مصرف آب دارد، با بهکارگیری این الگو سطح درآمد کشاورزان با کاهش مصرف آب دچار تغییر جدی نخواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating crop cultivation pattern using remote sensing, GIS and aPatch-Based approach

نویسندگان [English]

  • Moslem Darvishi 1
  • Abouzar Ramezani 2
1 Lecturer of geomatics, Department of engineering, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
2 Assistant professor of GIS, Department of engineering, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
چکیده [English]

Extended Abstract
Introduction
Due todecreased rainfall and increased groundwater harvesting, our country faces drought. With drastic decline of water levelin lakes and hydroelectric reservoirs, water scarcity is deeply felt. Thus, managers and officials shall find new ways of decreasing waterconsumption and overcome this crisis. Due to the rising global temperatures and reportsof the World Wildlife Fund, water scarcitycrisis will dominate most countries of the world, especially in Europe and Asia in the next ten years (Sengupta, 2018). Therefore, advanced water management principles shall be applied to decrease water consumption in the agricultural sector and maintain water security.
Iran is among the top five countries of the world in terms of having vast irrigated land (Bruinsma, 2017), which shows that in many parts of the country agricultural lands are irrigated. Thus, the country’s water resources reach a critical stage, and because of limited resources, no more water can be provided for agriculture.
The present study primarily seeks to optimize crop cultivation using two approaches: first, reduce water consumption and increase farmers’ income and second, reduce water consumption and meet domestic demand. In order to achieve this goal, first, the type of crops and area under cultivation were determined using remote sensing and satellite imagery. Then,spatial information system was used for data analysisand optimization of crop cultivation.
 Materials & Methods
Remotely sensed images were used to collect data about the area under cultivationin agricultural patches and crop type. Those images were then analyzed using remote sensing techniques.According to pixel-based classification ofmultitemporal satellite images using training data, a croplabel is assigned to each pixelin this method. Moreover, borders of each agricultural land are extracted from pan-chromatic images of the region with higher spatial resolution. Finally, fitting the results of pixel-based classification with the extracted bordersof each agricultural land,a final croplabel is determinedfor the total area of the agricultural landbased on the majority labels.
In order to optimize the problem, two objective functions (relationships 1 and 2) are defined in which income maximization and water consumption minimization are considered. Typically, location and allocation problems include objective and constraints functionswhich are maximized or minimized based on the goal of the problem. Linear programming is used to solve the problem. Linear programming is a classical optimization method whichdevelop a deterministic algorithm tosolve the problem. This method can only be used when the relationships between variables are linear. In other words, the relationship between variables shall be perfectly proportional and directin this method.
(1) (1)
 (2)
 
 Result &Discussion
The study area consists of 198 hectares of agricultural land in vicinity of GolangTapeh village of Asadabad city. The city covers an area of ​​1195 km2 and constitutes 6.1% of Hamadan province. It is located between 34° 37› to34°50 ‹northern latitude and 47°9› to 47°51›eastern latitude. Its average height is 1607 meters above sea level. The city is bounded in northwest with the province of Kordestan,in west with the province of Kermanshah, in southeast with Tuyserkancity and in the northeast withBaharcity. Assad Abad consists of three plains and a mountainside, but since it mostly consists of fertile plains, it can be considered as a flat area (Fig. 1).
 
 
 
 
Fig1: Case study area
 
Figure 2 shows the results of pixel-basedclassificationusing neural network method. In this method, network is trained using ground data. After training the network on the basis of ground truth estimator data, the estimation accuracy is about 88%.
 
Fig. 2: The results ofclassification using neural network
Following the calculation of the area under cultivation in agricultural lands and the type of crops, optimization is investigated using two scenarios (Figure 3). In the first scenario, reduction of water consumption and increased farmers’ income and in the second scenario,meeting domestic demandsto prevent capital outflow is considered.
 
 
Fig3: Crop type and boundaries of agricultural lands
 
In the first scenario, our priority is to reduce water consumption and increase farmers’ income. In this scenario, the goal is to select the type of crops according to the modeling constraints so that the crop type and water consumption are optimized. Figure 4 shows the proposed crop type.
 
Fig4: The results of thefirst scenario
 Conclusion
The present study used a combination of remote sensing and spatial information system to find a solution for optimization ofcultivation pattern through two different scenarios. First, land boundaries and types of crops were determinedusing pan-chromatic images and artificial intelligence. Then, two objective functions were developed to minimize water consumption and maximize income. Also, constraints such as crop type, periodicity constraints and domestic demand were modeled. Considering two objective functions, an algorithm was presented to optimize the cultivation pattern and the results were implemented in this algorithm. Results indicated that the difference between the first scenario which seeks to minimize water consumption and maximize farmers’ income and the second scenario which seeks tominimize water consumption and maximizedomestically demanded crops is relatively small. In both scenarios, the water use rate inAsadabad plain have decreased by about 1000 m3. In other words, in both scenarios there was a 50% reduction in water consumption. Moreover, if priority is given to meeting domestic demand, water consumption increase by about 3% and income decrease by about 3%. In future studies, owners of each agricultural land can be determined and each farmer’s incomecan be considered to further optimize crop cultivation.

کلیدواژه‌ها [English]

  • RS
  • GIS
  • Agriculture
  • Optimization
1- بافکار, ع., فرهادی بانسوله, ب., &برومندنسب, س. (2017). Optimization of water use in agriculture using the results of a crop growth simulation model (WOFOST)(Case study: Mahidasht-Kuzaran, Kermanshah Province). مجله پژوهش‌های حفاظت آب و خاک, 23(6), 301-315.
2- پور, ع., احمدعلی, جبارزاده, آرمین, &یحیائی. (2018). ارائه یک رویکرد برنامه‌ریزی ریاضی برای بهینه‌سازی مسئله برنامه ریزی کاشت محصولات کشاورزی تحت شرایط عدم قطعیت عدد زی. مجله پژوهش‌های حفاظت آب و خاک, 25(5), 1-24.
3- حسینی, سادات, آ., مهرگان, &ابراهیمی. (2016). تعیین الگوی کشت بهینه محصولات زراعی با تأکید بر بیشینه کردن منافع اجتماعی و واردات خالص آب مجازی. فصلنامه علمی - پژوهشی تحقیقات اقتصاد کشاورزی, 8(31), 123-144.
4- سلیمی مستعلی, ف., حافظ پرست, م., &سرگردی, ف. (2019). Simulation and optimization of the dam operation under the changing cultivation pattern scenario (Case Study: Harsin dam). تحقیقات آب و خاک ایران (مقالات آماده انتشار).
5- عابدین پور, ا., جبارزاده, آ., &یحیائی, م. (2018). A multi objective mathematical modeling for crop planning problem under Z-number uncertainty. مجله پژوهش‌های حفاظت آب و خاک, 25(5), 1-24.
6- ورزنه, م., &نژاد, و. (2015). تخصیص آب در شبکه‌های آبیاری به‌کمک سیستم پشتیبانی تصمیم‌گیری مبتنی بر سیستم اطلاعات مکانی (GIS) و الگوریتم ازدحام ذرات (PSO) (نمونة موردی: اراضی کشاورزی قورتان). اکوهیدرولوژی, 2(1), 39-49.
7- Adhikary, P. P., Barman, D., Madhu, M., Dash, C. J., Jakhar, P., Hombegowda, H., . . . Beer, K. (2019). Land use and land cover dynamics with special emphasis on shifting cultivation in Eastern Ghats Highlands of India using remote sensing data and GIS. Environmental monitoring and assessment, 191(5), 315.
8- Bandyopadhyay, S., Jaiswal, R., Hegde, V., & Jayaraman, V. (2009). Assessment of land suitability potentials for agriculture using a remote sensing and GIS based approach. International Journal of Remote Sensing, 30(4), 879-895.
9- Bangjie, Y., Zhiyuan, P., & Songling, Z. (2001). RS GIS GPS Based Agricultural Condition Monitoring Systems at a National Scale [J]. Transactions of The Chinese Society of Agricultural Engineering, 1, 033.
10- Bruinsma, J. (2017). World agriculture: towards 2015/2030: an FAO study: Routledge.
11- Esmailpour Estarkhi, H., Karimi, M., Alimohammadi Sarabi, A., & Davari, K. (2017). Planning of Agricultural Crops Cultivation Using Spatial Optimization Methods. Engineering Journal of Geospatial Information Technology, 5(2), 19-33.
12- Forkuor, G., Pavelic, P., Asare, E., & Obuobie, E. (2013). Modelling potential areas of groundwater development for agriculture in northern Ghana using GIS/RS. Hydrological sciences journal, 58(2), 437-451.
13- Ghosh, J., & Porchelvan, P. (2017). Remote sensing and GIS technique enable to assess and predict landuse changes in Vellore district, Tamil Nadu, India. International Journal of Applied Engineering Research, 12(12), 3474-3482.
14- Gökkaya, K., Budhathoki, M., Christopher, S. F., Hanrahan, B. R., & Tank, J. L. (2017). Subsurface tile drained area detection using GIS and remote sensing in an agricultural watershed. Ecological engineering, 108, 370-379.
15- Heidari, N., Amirnejad, H., & Hosseini, S. (2017). Determination of Optimal Pattern of Conventional Agrarian Activities of Forest Fringe Villagers in Hezarjarib Area, Iran.
16- Karimi, H., Soffianian, A., Seifi, S., Pourmanafi, S., & Ramin, H. (2020). Evaluating optimal sites for combined-cycle power plants using GIS: comparison of two aggregation methods in Iran. International Journal of Sustainable Energy, 39(2), 101-112.
17- Lalbiakmawia, F., & Kumar, S. (2017). Ground Water Prospecting using Remote Sensing and GIS in Champhai District, Mizoram, India. TTPP, 131.
18- Li, J., Zhu, T., Mao, X., & Adeloye, A. J. (2016). Modeling crop water consumption and water productivity in the middle reaches of Heihe River Basin. Computers and Electronics in Agriculture, 123, 242-255.
19- Memic, E., Graeff, S., Claupein, W., & Batchelor, W. (2019). GIS-based spatial nitrogen management model for maize: short-and long-term marginal net return maximising nitrogen application rates. Precision agriculture, 20(2), 295-312.
20- Mustafa, A., Singh, M., Sahoo, R., Ahmed, N., Khanna, M., Sarangi, A., &Mishra, A. (2011). Land suitability analysis for different crops: a multi criteria decision making approach using remote sensing and GIS. Researcher, 3(12), 61-84.
21- Neissi, L., Albaji, M., & Nasab, S. B. (2020). Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran. Agricultural water management, 231, 106004.
22- Pulighe, G., Bonati, G., Fabiani, S., Barsali, T., Lupia, F., Vanino, S., . . . Roggero, P. P. (2016). Assessment of the agronomic feasibility of bioenergy crop cultivation on marginal and polluted land: A GIS-based suitability study from the Sulcis area, Italy. Energies, 9(11), 895.
23- Rahman, R., & Saha, S. (2008). Remote sensing, spatial multi criteria evaluation (SMCE) and analytical hierarchyprocess (AHP) in optimal cropping pattern planning for a flood prone area. Journal of Spatial Science, 53(2), 161-177.
24- Raza, S. M. H., Mahmood, S. A., Khan, A. A., & Liesenberg, V. (2018). Delineation of potential sites for rice cultivation through multi-criteria evaluation (MCE) using remote sensing and GIS. International Journal of Plant Production, 12(1), 1-11.
25- Sengupta, S. (2018). Warming, water crisis, then unrest: how Iran fits an alarming pattern. The New York Times, 18.
26- Singh, D., Jaiswal, C., Reddy, K., Singh, R., & Bhandarkar, D. (2001). Optimal cropping pattern in a canal command area. Agricultural water management, 50(1), 1-8.
27- Xie, Y., Xia, D., Ji, L., & Huang, G. (2018). An inexact stochastic-fuzzy optimization model for agricultural water allocation and land resources utilization management under considering effective rainfall. Ecological Indicators, 92, 301-311.
28- Yousefi, M., Banihabib, M. E., Soltani, J., & Roozbahani, A. (2018). Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater. Agricultural water management, 208, 224-231.