بررسی جزایر گرمایی شهر تهران با استفاده از تصاویر ماهوارهای

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه جغرافیا، دانشگاه علوم انتظامی امین، تهران، ایران

10.22131/sepehr.2021.242864

چکیده

در سطح شهر تهران شناسایی جزایر گرمایی که در اثر روند گسترش شهرنشینی ایجاد شده‌اند و تأثیر آن‌ها بر آلودگی هوا، دارای احتمال می‌باشد. لذا در این پژوهش به ارتباط بازتاب طیفی پدیده‌های تأثیر‌گذار بر روند گسترش پدیده جزایر گرمایی در سطح شهر تهران و حومه پرداخته شده است. تصاویر ماهواره لندست 8 شهر تهران در دو تاریخ 16- آذر- 1396 و تاریخ  16- مرداد- 1396 اخذ و پیش‌پردازش‌های اولیه از قبیل تصحیحات هندسی و رادیومتریک و اتمسفریک انجام گرفت و بعد از پیش‌پردازش‌های اولیه از باندهای 9 و 10 که باندهای حرارتی این ماهواره می‌باشند درجه حرارت زمین (LST) استخراج گردید. سپس از باندهای طیفی این ماهواره شاخص پوشش گیاهی نرمال شده (NDVI) برای سطح زمین محاسبه شد. بعد از آن، بازتاب طیفی تمام پدیده‌های زمینی تأثیر‌گذار از روی تصاویر استخراج شد و ارتباط آن با آلودگی و درجه حرارت سطح زمین به‌دست آمد. شاخص پوشش گیاهی نرمال (NDVI) نشان داد که شاخص پوشش گیاهی در مناطق مختلف شهری در محدوده فضای سبز، محدوده اتوبان (آسفالت)، محدوده مسکونی (ساختمان)، پوشش سبزینگی کم، محدوده سایه‌، محدوده ابر و محدوده مختلط زمین لخت + ساختمان + پوشش گیاهی شامل(0.41، 0.00، 0.04، 0.10، 0.01-، 0.04 و 0.03) می‌باشند. همچنین، بازتاب طیفی محدود‌ه‌های تأثیرگذار در تشکیل جزایر گرمایی شهری، محدوده فضای سبز و کمترین محدوده تأثیر‌گذار مربوط به سایه بوده است. بیشترین منطقه تحت تأثیر جزایر گرمایی شهری مربوط به بزرگراه امام علی (علیه‌السلام) بوده که بیشترین حجم ترافیک را دارا می‌باشد. مناطق با آلودگی کمتر که کمترین تأثیر در ایجاد جزایر گرمای شهری را دارند در حدود 0.59=R2 و مناطق با آلودگی بیشتر دارای بیشترین تأثیر در ایجاد جزایر گرمای شهری در حدود 0.72=R2 می‌باشد. مناطق با پوشش گیاهی کم و خاک لخت بیشترین درجه حرارت زمین (LST) را نشان می‌دهد. بیشترین مناطق، دارای درجه حرارت زمین (LST) بین 42.9 تا 46.2 درجه سانتی‌گراد می‌باشد. کمترین مناطق، دارای دمای سطح زمین بین 36.5 تا 39.5 درجه سانتی‌گراد بوده است. نقشه کاربری زمین به‌دست آمده نیز تأیید‌کننده نتایج LST می‌باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating urban heat islands in Tehran using satellite images

نویسنده [English]

  • Hadi Fadaei
Assistant professor, Geography group, Amin Police Science University, Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
One of the major environmental issues and requirementsof the contemporary worldis the acquisition of knowledge and related technologies. Urban Heat Island (UHI) refers to the occurrence of higher surface temperature in urban areas compared to the surrounding rural areas due to high urbanization. Urban Heat Island (UHI) is an important ecological effect of rapid urbanization. While the temporal and spatial importance of UHIs and their causes have been discussed in previous studies, precise identification of the morphology and shape of the earth and its relation with UHIs have not been studied. Urban heat islands occur primarily due tourban developmentand changes in land surface. This has created unfavorable conditions and many problemsfor citizens. Vegetation cover can reduce the effect of heat island. Satellite data can be used to determine the distribution of urban heat islands, but new methods of measurement are still needed to get better results.Ground data can also help in validation of remote sensing analysis. The present study has investigatedurban heat islands occurring in the city of Tehran and its suburbs due to urbanization and traffic.
 Method
The present study has been carried out in Tehran, the capital city of Iran, located in the northern part of the country,on the southern slopes of the Alborz Mountain Range, along 51⁰ to 51⁰ 40′ easternlongitudeand 35 ⁰ 30′ to 35 ⁰ 51′ northernlatitude. According to the latest population and housing census in 2011 performed by the Statistical Center of Iran, Tehran has a population of 8,154,051 and still is the most densely populated city of Iran with a clear demographic difference with other cities of the country. The study area borders with mountainous areas of the north and desertsof the south, thus the southern and northern regions of the study area have different climates. The northern regions have cold and dry climates, while the southern parts suffer from hot and dry climates. The elevation varies from 900 to 1800 meters. This huge difference inelevationis due to the vast area of the city. In Tehran metropolis, the average annual temperature varies between 18 and 15 ° C, and different parts of the city have an average temperature difference of 3 ° Cdue to the elevation difference in the city. Average monthly relative humidity including minimum and maximum relative humidity recorded at Mehrabad station shows that in in the morningof July to January, humidity changes from at least 38% to a maximum of 79%. Midnight relative humidity varies from 15% to 18% in June to 47% in February. The annual rainfall in Tehran is mainly influenced by the difference in elevation and varies between 422 mm in the north and at least 145 mm in the southeast. The number of rainy days also follows the same pattern and varies between 89 days in the north and 33 days in the south. Also in this urban area, 205 to 213 days of each yearhave a clear sky with some cloud. In this exploratory study, Landsat 8 satellite images for Tehran were obtained and processed (geometrical, radiometric and atmospheric corrections).  The Operation Land Imager(OLI)with its three new bands: a deep blue band for coastal / aerosols studies (band 1), a short-wave infrared band for cirrus cloudsdetection and Band Quality Assessment (Band 9), and an Infrared Thermal Sensor (TIRS) which offers two high resolution thermal bands (approx. 30 m) (band 10, 11) were used. In addition, two of the valuable thermal bands at 10.9 µm and 12.0 µm have Landsat 8 images. In this study, spectral reflections of all terrestrial members of spectral phenomena were obtained based on the total wavelengths of Landsat 8 (wavelengths of 430-2290 nm). For UHI estimation,surface temperature can be obtained from the two thermal bandsand improved using split-window methods.The relation between thermal islands can be calculated using air pollution ground data. The present study tries to select suitable indices such as Normalized Difference Vegetation Index (NDVI). The vegetation index (NDVI) of land surface was calculated using spectral bands.
 Results
The LST map was produced using Landsat OLI 8 satellite images. Temperature in this map was obtained using standard deviation from the classified values,and areas affected by the UHI were identified subsequently. According to the LST map, the surface temperature varies between 21.5 ° C and 57.9 ° C. On the day of imaging, the lowest average temperature of water was 35 ° C and the maximum average temperature of bare lands was 48 ° C in the study area.
 Recommendations
It is recommended to use spectral reflectance measurements such as field spectroradiometer in natural conditions to evaluate the spectral reflectance accuracy. At a later stage, spectral reflection of different phenomena can be used to classify satellite images and examine their relationship with the urban heat islands

کلیدواژه‌ها [English]

  • Landsat Satellite Images
  • Spectral reflectance
  • Vegetation index
  • Land surface temperature (LST)
  • Air pollution
1- بیگدلی، ولدان زوج، مقصودی مهرانی؛ بهنام، محمدجواد، یاسر. (1394). ارزیابی پتانسیل تصاویر سنجنده OLI در تفکیک شش رقم گندم ایرانی با استفاده از کتابخانه‌ی طیفی. فصلنامه علمی - پژوهشی اطلاعات جغرافیایی (سپهر)، 24 (93)، 5-26،
 https://Doi: 10.22131/sepehr.2015.14003
2- پیرنظر، روستایی، فیضی‌زاده، رئیسی نافچی؛ مجتبی، شهرام، بختیار، فاطمه. (1397). بررسی درجه حرارت سطح زمین و ارتباط آن با کلاس‌های پوشش کاربری زمین شهری با استفاده از داده‌های سنجنده لندست 8 (مطالعه موردی : شهر تهران. مجله آمایش جغرافیایی فضا، 8 (29): 227-240.
3- ساسان‌پور، ضیاییان، بهادری؛ فرزانه، پرویز، مریم. (1392). بررسی رابطه کاربری و پوشش اراضی و جزایر حرارتی شهر تهران. جغرافیا: 11 (39): 256-270.
4- شکیبا، ضیاییان فیروزآبادی، عاشورلو،  نامداری؛ علی‌رضا، پرویز، داوود، سودابه. (1388). تحلیل رابطه کاربری و پوشش اراضی و جزایر حرارتی شهر تهران، با استفاده از داده‌های +ETM. سنجش‌از‌دور و GIS ایران: 1(1)، 39-56.
5- گلکار، حجام، وظیفه‌دوست؛ فرید، سهراب، مجید. (1393). به‌کارگیری محصولات سنجنده مدیس با هدف کمک به اجرای باروری ابرها. پژوهش‌های اقلیم‌شناسی،1393(19)، 93-111.
6- متکان، نوحه‌گر، میرباقری، ترک چین؛ علی‌اکبر،  احمد، بابک، ناهید (1393). تحلیل نقش کاربری اراضی در شکل‌گیری جزایر حرارتی با استفاده از داده‌های چند زمانه سنجنده ASTER (مطالعه موردی: شهر بندرعباس)، فصلنامه سنجش‌از‌دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 5(4)، 1-14.
7- معروف‌نژاد، عباس. (1390). تأثیر کاربری‌های شهری در ایجاد جزایر حرارتی (مطالعه موردی: شهر اهواز). فصلنامه آمایش محیط، 4(14)، 65-90.
8- ولی‌زاده کامران، غلام‌نیا،  عینالی،  موسوی؛  خلیل،  خلیل،  گلزار، سید محمد. (1396). برآورد دمای سطح زمین و استخراج جزایر حرارتی با استفاده از الگوریتم پنجره مجزا و تحلیل رگرسیون چند متغیره (مطالعه موردی: شهر زنجان). پژوهش و برنامه‌ریزی شهری, 8(30), 35-50.
9- هادی‌پور، دارابی، داودی‌راد؛ مهرداد، حمید، علی‌اکبر. (1398). بررسی جزایر حرارتی شهری و ارتباط آن با شرایط آلودگی هوا و شاخص‌های NDVI و NDBI در شهر اراک. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی «سپهر»، 28 (112)، 249-264.
 https://DOI: 10.22131/sepehr.2020.38619
10- Abera, T. A., Heiskanen, J., Pellikka, P., Rautiainen, M., & Maeda, E. E. (2019). Clarifying the role of radiative mechanisms in the spatio-temporal changes of land surface temperature across the Horn of Africa. Remote sensing of Environment, 221, 210-224.
11- Aslami, F., & Ghorbani, A. (2018). Object-based land-use/land-cover change detection using Landsat imagery: a case study of Ardabil, Namin, and Nir counties in northwest Iran. Environmental monitoring and assessment, 190(7), 376.
12- Ayanlade, A., & Howard, M. T. (2019). Land surface temperature and heat fluxes over three cities in Niger Delta. Journal of African Earth Sciences, 151, 54-66.
13- Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustainable Cities and Society, 23, 94-104.
14- Bulatov, D., Burkard, E., Ilehag, R., Kottler, B., & Helmholz, P. (2020). From multi-sensor aerial data to thermal and infrared simulation of semantic 3D models: Towards identification of urban heat islands. Infrared Physics & Technology, 105, 103233. https://doi:10.1016/j.infrared.2020.103233
15- Chen J., Dahlin, M. J., Luuppala, L., Bickford, D., Boljka, L., Burns, V., and Johnson, M. S. (2020) Air Pollution and Climate Change: Sustainability, Restoration, and Ethical Implications. In: Goodsite M.E., Johnson M.S., Hertel O. (eds) Air Pollution Sources, Statistics and Health Effects. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0596-7_1082
16- Chen, B., Jin, Y., & Brown, P. (2019). An enhanced bloom index for quantifying floral phenology using multi-scale remote sensing observations. ISPRS Journal of Photogrammetry and Remote Sensing, 156, 108–120. https://doi:10.1016/j.isprsjprs.2019.08.006
17- Duan, S., Luo, Z., Yang, X., & Li, Y. (2019). The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings. Applied energy, 235, 129-138.
18- Guttikunda, S. K., Nishadh, K., & Jawahar, P. (2019). Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Climate, 27, 124-141.
19- Huang, Q., Huang, J., Yang, X., Fang, C., & Liang, Y. (2019). Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China. Sustainable Cities and Society, 44, 666-675.
20- Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670–1684. https://doi:10.1016/j.egyr.2020.06.015 
21- kheradmandi, M., & Abbaspour, R. (2016). Enrichment of Air Quality Monitoring with mobile Sensors for Spatial Modelling of Pollutants (case study: CO in Tehran). Journal of Geospatial Information Technology, 4(2), 29-46. (in Persian).
22- Li, W., Han, C., Li, W., Zhou, W., & Han, L. (2020). Multi-scale effects of urban agglomeration on thermal environment: A case of the Yangtze River Delta Megaregion, China. Science of The Total Environment, 136556. https://doi:10.1016/j.scitotenv.2020.136556
23- Liou, Y.-A., Le, M. S., & Chien, H. (2018). Normalized Difference Latent Heat Index for Remote Sensing of Land Surface Energy Fluxes. IEEE Transactions on Geoscience and Remote Sensing, 1–11. https://doi:10.1109/tgrs.2018.2866555
24- Medved, S., Domjan, S., & Arkar, C. (2019). Sustainable Technologies for Nearly Zero Energy Buildings: Design and Evaluation Methods: Springer.
25- Reyes-Paecke, S., Gironás, J., Melo, O., Vicuña, S., & Herrera, J. (2019). Irrigation of green spaces and residential gardens in a Mediterranean metropolis: Gaps and opportunities for climate change adaptation. Landscape and urban planning, 182, 34-43.
26- Rouse Jr, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS.
27- Sajib, M. Q. U., & Wang, T. (2020). Estimation of Land Surface Temperature in an Agricultural Region of Bangladesh from Landsat 8: Intercomparison of Four Algorithms. Sensors, 20(6), 1778. https://doi:10.3390/s20061778
28- Sarami, H., & Salaki, L. (2006). Thermal Islands. Scientific - Research Quarterly of Geographical Data (SEPEHR), 14(56), 43-49. (in Persian).
29- Srivastav, A. (2019). Reducing Carbon Growth The Science and Impact of Climate Change (pp. 111-146): Springer.
30- Sun, R., Lü, Y., Yang, X., & Chen, L. (2019). Understanding the variability of urban heat islands from local background climate and urbanization. Journal of Cleaner Production, 208, 743-752.
31- Thenkabail, P. S., Lyon, J. G., & Huete, A. (2018). Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation: CRC Press.
32- Ulpiani, G. (2020). On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Science of the Total Environment, 141727. https://doi:10.1016/j.scitotenv.2020.141727 
33- Wang, M., He, G., Ishwaran, N., Hong, T., Bell, A., Zhang, Z., … Wang, M. (2018). Monitoring vegetation dynamics in East Rennell Island World Heritage Site using multi-sensor and multi-temporal remote sensing data. International Journal of Digital Earth, 1–17. https://doi:10.1080/17538947.2018.1523955
34- Zhang, H., Li, T.-T., & Han, J.-J. (2020). Quantifying the relationship between land use features and intra-surface urban heat island effect: Study on downtown Shanghai. Applied Geography, 125, 102305. https://doi:10.1016/j.apgeog.2020.102305 
35- Zhao, J., Zhong, Y., Hu, X., Wei, L., & Zhang, L. (2020). A robust spectral-spatial approach to identifying heterogeneous crops using remote sensing imagery with high spectral and spatial resolutions. Remote Sensing of Environment, 239, 111605. https://doi:10.1016/j.rse.2019.111605