تحلیل الگوی توزیع فضایی تولید پسماند شهری در مناطق 22 گانه تهران با استفاده از تکنیک رگرسیون موزون جغرافیایی و شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی شهرسازی، گرایش برنامه ریزی شهری، دانشگاه تربیت مدرس

2 دانشیار گروه شهرسازی، دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران

3 استادیار گروه شهرسازی، واحد پردیس، دانشگاه آزاداسلامی، پردیس، ایران

10.22131/sepehr.2021.244461

چکیده

پسماند شهری یکی از چالش های پیش روی شهرها و کلان شهرها در قرن  21  به شمار میرود. چالشی که کیفیت ‌‌های محیط شهری، اقتصاد شهری و سلامت شهری را تحت تأثیر قرار میدهد. برنامه ریزی پیرامون مدیریت کارا در راستای کاهش و مدیریت پسماند شهری از جمله اهداف بانک جهانی در سال  2016  برای شهرهای بزرگ بود؛ اما برای برنامه ریزی و مدیریت مناسب، بحث شناخت متغیرهای اثرگذار بر پسماند شهری مطرح میگردد. چالش مدیریت و برنامه ریزی مناسب پسماند شهری برای شهر تهران و مناطق 22 گانه آن نیز مطرح میباشد. این پژوهش با هدف تحلیل الگوی توزیع فضایی تولید پسماند شهری (متغیرهای مستقل) و میزان پسماند شهری (متغیروابسته) به دنبال بررسی متغیرهای اثرگذار بر پسماند شهری در سطح شهر تهران و مناطق 22 گانه آن است. پژوهش حاضر از نوع کاربردی و توسعه ای و روش آن توصیفی - تحلیلی (قیاسی) مبتنی بر تحلیل های فضایی و مکانی می باشد. سطح اطلاعات مورد استفاده، 123 ناحیه است که داده های آن از سازمان پسماند شهرداری تهران، مرکز آمار و شهرداری تهران تهیه شده است. تکنیک های مورد استفاده در این پژوهش شامل رگرسیون حداقل مربعات و رگرسیون موزون جغرافیایی برای بررسی رابطه و پیش بینی مبتنی بر آن و شبکه عصبی مصنوعی برای پیش بینی بر اساس ماهیت متغیرها می باشد. نتایج به دست آمده بیان کرد که متغیر قیمت زمین با ضریب منفی 0.96 رابطه معناداری با پسماند شهری نداشته است و متغیرهای مهاجرت و کاربری های شهری - بهداشتی درمانی به ترتیب با ضرایب (0.123 و 0.186) بر میزان پسماند شهری در مناطق شمالی اثرگذار میباشد. از بُعد روشی نیز تحلیل واریانس میان رگرسیون ها بیان کرد که رگرسیون موزون جغرافیایی با ضریب 2.355 برتری به نسبت رگرسیون حداقل مربعات داشته است. همچنین ضرایب تعیین نهایی مدل ها بیان کرد که شبکه عصبی مصنوعی با ضریب 0.967 عملکرد بهتری در بُعد غیرمکانی برای پیش بینی مدل و میزان پسماند شهری داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the spatial distribution pattern of Solid Waste generation in 22 districts of Tehran using geographically weighted regression and artificial neural network techniques

نویسندگان [English]

  • Morteza Najafi 1
  • Mojtaba Rafieian 2
  • Rama Ghalambor Dezfuli 3
1 M.Sc., Urban planning, Faculty of art and architecture, TarbiatModares University, Tehran
2 Associate professor, Department of urban planning, Faculty of art and architecture, TarbiatModarres University, Tehran, Iran
3 Assistant professor of urban planning, Pardis Branch, Islamic Azad University, Pardis, Iran
چکیده [English]

Introduction
Nowadays, spatial models and techniques are widely used to analyze challenges at urban and regional levels. These models and techniques can identify the relations between different variables, evaluate their impact on spatial spheres, and thus aid urban planners and managers. Recently, solid waste and the amount of waste generated in urban areas have gained attention as a major global challenge and the World Bank has highlighted the importance of an acceptable global approach to the issue of urban waste in 2016 (World Bank, 2016). Urban waste impacts the city and its urban management system in different ways such as urban environment degradation, economic impacts and the challenges of urban landscape. Different factors impact urban solid waste generation and investigating the relation between these variables can help urban planners and managers formulate general plans and policies to reduce urban waste. But a mere examination of the relationship between factors affecting urban waste generation and the variables proposed by the World Bank cannot provide a good estimate of the future status, since spatial factors always impact the quantity of urban waste generated. Therefore, spatial models and artificial neural networks were proposed and discussed. Geographically Weighted Regression is one of these methods used to investigate the relationship between different factors affecting urban waste generation. Geographically Weighted Regression can investigate the relationship between different variables, examine their impact on the city and predict the relationship between different variable of urban waste generation and their impact on the city in the future. The artificial neural network was also used to assess the nature of data and predict the future status of urban waste.
 
Materials & Methods
The study area consists of 22 districts, 123 zones (116 zone due to the availability of supplementary information of 2011-2012 regarding the districts of Tehran), 40323 statistical areas and 895247 land uses of Tehran. Data were classified in three stages.  The first phase includes the information collected from Tehran waste management organization regarding urban waste in 1996 to 2016. In the second phase, information was collected from statistical center of Iran regarding demographic segments and social components. Finally, data were collected from Tehran municipality in the third phase providing useful information about urban performance (Land use).
 
Results & Discussion
Physical-environmental components and especially land use directly impact urban waste generation. However, results indicate that some land uses such as institutional and publicbuildings gradually stop the increasing process of urban waste generation due to a decrease in their population as compared to residential land use. Population density and income ratio are investigated as the first and second rank variables. These two variables have directly impacted the amount of urban waste generation in most districts of Tehran. From central areas of the 6th district to the southern areas of the 20th district, southeastern areas of the 18th district and eastern areas of the 4th district of Tehran were influenced by population variables. In other words, the amount of urban waste generation is increased with increased population density in these district. However, the amount of urban waste generation in the 22nd and 21st districts do not change with the above mentioned variables.
Results indicate that different urban development plans and policies increase population and area dedicated to different land uses and thus, play an important role in urban waste generation. The 22nd and 21st districts are in a desirable status regarding variables such as area, population, and urban waste generation, but predictions indicate that they will reach a similar status and face challenges related to urban waste generation in 10 years. Spatial distribution pattern of urban waste generation in Tehran indicates that the eastern and southern districts produce the highest amount of urban wastes. This pattern is gradually moving from central to western and central districts, and without a plan to control the situation, the pattern will move from east to west and south to north of Tehran in the next 10 years.
Based on the results of spatial autocorrelation and a comparison with the results of the least squares method, Geographically Weighted Regression was considered as a suitable method of predicting urban waste variables in Tehran. This indicates that spatial variables affect urban waste generation in Tehran. Moreover, artificial neural network is capable of predicting non-spatial nature of relations among different variables of urban waste generation and thus can predict the amount of urban waste generation in Tehran.
 
Conclusion
Results not only identify (physical-environmental, economic and social) variables affecting urban waste generation, but also indicate superiority of Geographically Weighted Regression technique at spatial and non-spatial levels as compared to the least-squares regression and artificial neural network.

کلیدواژه‌ها [English]

  • urban waste
  • 22 Districts of Tehran
  • Geographically weighted regression
  • Artificial neural network
1- ابراهیمی، احرام‌پوش، هاشمی، دهواری؛اصغر، محمدحسن، حسن، محبوبه (1395)، پیش بینی میزان تولید پسماند شهری با استفاده از روش سری زمانی (تکنیکARMA) و مدل سازی پویایی سیستم (نرم ‌افزار Vensim)، نشریه سلامت و محیط ‌زیست، دوره 9، شماره 1، صص 57-68.
2- احمدیان، علیرضا (1388)، بررسی روابط بین متغیر‌های فضایی در یک پهنه شهری با استفاده از GWR محدوده مطالعاتی منطقه  7  تهران، سلطانی، علی، دانشگاه شیراز، گروه شهرسازی.
3- پیوسته ‌گر، انصاری؛ یعقوب، محمدحسین  (1396)، بررسی و ارزیابی عوامل اجتماعی مؤثر بر کاهش سرانه تولید پسماند خانگی (مطالعه موردی:  مناطق 3  و  10  شهرداری تهران)، فصلنامه علوم و تکنولوژی محیط ‌زیست، دوره  19، شماره 4.
4- حاتمی، معماریان فرد، صبور؛ امیرمصطفی، مهسا، محمدرضا  (1395)، بررسی تفکیک و جداسازی پسماند در مناطق  22‌ گانه شهر تهران با استفاده از سیستم اطلاعات مکانی، نشریه علوم و فنون نقشه برداری، دوره 6، شماره  3، صص 63-74.
5- رفیعیان، دزفولی، فرزادی؛ مجتبی، راماقلمبر، نگار (1395)، رصد وضعیت شهرسازی تهران (نظام قطعه ‌بندی و کاربری زمین)، انتشارات سازمان فناوری اطلاعات و ارتباطات شهرداری تهران، تهران.
6- سرائی، علیان، خاوریان؛ محمدحسین، مهدی، امیررضا (1392)، ارزیابی وضعیت توزیع فضایی - مکانی پسماند در مناطق  22‌ گانه کلان ‌شهر تهران، اولین کنفرانس ملی خدمات شهری  ومحیط ‌زیست، مشهد.
7- صارمی، حیدری، آقایی؛ محمدرضا، محمد، فاطمه (1397)، تحلیل فضایی قیمت مسکن با استفاده از تکنیک رگرسیون موزون جغرافیایی، نشریه اقتصادی شهری، اصفهان
8- عبدلی، محمد‌علی (1379)، مدیریت مواد زائد جامد شهری، انتشارات سازمان شهرداری ‌های کشور، تهران
9- عبدلی، محمدعلی (1387). بازیافت مواد زائد جامد شهری.  تهران:  انتشارات دانشگاه تهران.
10- کیا، سیدمصطفی (1397)، محاسبات نرم، انتشارات دانشگاهی کیان، تهران
11- مرکز آمار ایران (1395)، سرشماری‌ عمومی نفوس و مسکن.
12- نریمانی،احمد (1394)،تحلیل سری زمانی با استفاده از EViews، انتشارات ناقوس، تهران
13- Ali, M. Wang, W. Chaudhry, N. Geng, Y.(2017); Hospital waste management in developing countries: A mini review. Waste Manag. Res. 2017, 35, 581–592
14- Bramston,p.pertty,G and chipuer,h(2002), unraveling Subjective quality of life: AN investigation of individual and community determin ants, indicatovsresearch,p.p 5
15- Damodar N Gujarati, (2008) Basic Econometncs, Publisher: MC Graw
16- EEA. (2012). nformation received during the Eionet consultation of the paper. Federal Environment Agency, Germany: European Environment Agency Germany.
17- Ferronato, N. Torretta, V. (2019); Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health, 16, 1060.
18- Hettiarachchi, H. Meegoda, J.N.(2018); Ryu, S. Organic Waste Buyback as a Viable Method to Enhance Sustainable Municipal Solid Waste Management in Developing Countries. Int. J. Environ. Res. Public Health, 15, 2483
19- Higgs, G. (2006). Integrating multi-criteria techniques with geographical information systems in waste facility location to enhance public participation. Waste Management and Research, 24, 105-117.
20- Medina,Martin. (2010). Solid wastes, poverty and the environment in developing country cities: Challenges and opportunities. Katajanokanlaituri 6 B, 00160 Helsinki, Finland: UNU World Institute for Development Economics Research (UNU-WIDER)
21- Mesjasz-Lech, Agata. (2014). Municipal Waste Management in Context of Sustainable Urban Development.Procedia - Social and Behavioral Sciences. 151. 244-256. 1016/10/j.sbspro.10/2014.023.
22- Oxford Advanced Learners Dictionary:of current English by A.S.Hornby(2000)
23- Vitorino de Souza Melaré, A.(2017); Montenegro González, S. Faceli, K. Casadei, V. Technologies and decision support systems to aid solid-waste management: A systematic review. Waste Manag, 59, 567–584.
24- World Bank.2016- Hoornweg, Daniel; Bhada-Tata, Perinaz. (2012). What a Waste: A Global Review of Solid Waste Management. Washington, DC: World Bank.
25- Yolin,Christine. (2015). Waste Management and Recycling in Japan Opportunities for European Companies. Tokyo: EU-Japan Centre for Industrial Cooperation.
26- Y. Moriguchi. (2009). 3rd Chapter: Introduction and expansion of indicators and quantitative targets at Basic Plan for Establishing an SMC,in Y. Sakita and S. Sakai, eds. Establishing an SMC. Tokyo.
27- www.waste.shiraz.ir
28- www.wmo,mashhad.ir
29- www.ppp.worldbank.com
30- www.atlas.tehran.ir