تلفیق معیارهای کیفی و کمی با استفاده از مدل های مکان مبنا به منظور مسیریابی بهینه ی خودروهای اورژانس در محیط های شهری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه تهران

2 استادیار گروه مهندسی سیستم های اطلاعات مکانی، دانشگاه اصفهان

3 استادیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران

چکیده

خودروهای اورژانس شهری با توجه به حساسیت مأموریت خود، همواره برای رسیدن به مقصد به دنبال کمترین زمان ممکن هستند. با توجه به پیچیدگی و گستردگی حمل و نقل و ترافیک در شهرهای بزرگ، عوامل و پارامترهای متعددی علاوه بر مسافت، در زمان رسیدن یک خودروی اورژانس به مقصد تأثیرگذار هستند که این پارامترها میتوانند کیفی یا کمی و پویا یا ایستا باشند. در این مقاله روشی نوین بر مبنای ترکیب مدلهای تلفیق، روش کمیسازی گاما، استفاده از روابط پیشبینی زمان سفر و الگوریتمهای فراابتکاری به منظور دستیابی به بهینهترین مسیر ارائه شده است. در این مقاله ابتدا کلیهی فاکتورهای تأثیرگذار کمی و کیفی قابل محاسبه و دسترسی از دید مسیریابی اورژانس شناسایی شده، سپس با تبدیل پارامترهای کیفی به کمی، هر پارامتر با روش محاسبهی حداکثر نرمال شده و بر اساس ارجحیت و میزان تأثیر هر پارامتر در یافتن مسیر بهینه تلفیق میگردند. روش تست گاما به عنوان یک روش برگرفته از داده برای محاسبهی میزان ارجحیت و تأثیرگذاری فاکتورها استفاده شد. روند مذکور با استفاده از دادهی شبکه معابر و حجم ترافیک دو منطقه از شهر تهران پیادهسازی شد. وزن در نظر گرفته شده برای هر زیرمعیار تشکیل دهندهی درجه سختی مسیر یعنی «کیفیت مسیر»، «عرض»، «شیب»، «نوع مسیر» و «میزان مستقیم بودن مسیر»  بر اساس این روش به ترتیب 331/0، 286/0، 188/0، 172/0 و 020/0 بدست آمدند. در نهایت از الگوریتم فراابتکاری ژنتیک برای انتخاب مسیر بهینه وسایل نقلیه اورژانس استفاده شد و نتایج آن با الگوریتم معمول مسیریابی دیکسترا مقایسه شد. بر مبنای مقایسهی انجام  شده روش ارائه شده در این مقاله نسبت به روشهای سادهی فعلی برتری قابل ملاحظهای داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Conflating qualitative and quantitative criteria using location-based models for optimal routing of emergency vehicles in urban environments

نویسندگان [English]

  • Mostafa Kheyrollahi 1
  • saeed nadi 2
  • Najmeh Neisany Samany 3
1 MSc. of Remote Sensing and GIS, University of Tehran, Iran
2 Assistant Professor, Faculty of surveying and Geomatics Engineering, Department of Engineering, University of Isfahan, Iran
3 Assistante Professor, Faculty of RS & GIS, Deprtment of Geography, University of Tehran, Iran
چکیده [English]

Abstract
Due to the sensitivity oftheir missions, urban emergency vehicles are alwayslooking forthe shortest timeto reach the destination. In big cities, in addition todistance, several factors and parameters with respect to the complexityand extent of thetransport and traffic, are influencing time of arrival of an emergency vehicle, some of which are qualitative or quantitative, dynamic or static. In this paper, the modern approach used, is based on composing conflation models, Gamma quantification methods, travel time prediction formulas and meta-heuristic algorithms in order to find most optimal route. In this paper, first we have tried to introduce all the calculated, available, qualitative and quantitative, affecting factors related to emergency routing, thenwith converting qualitative parameters to quantitative ones, we normalize each parameter by the maximum approach and conflate them in such a way that thepriority and impact of each parameteris determined to find the optimal route. In order to calculate the priority and impact of factors, the Gamma test method, as a data derived method is selected. The procedure is implemented by the use of road network and traffic volume data from two regions of Tehran. Based on this approach, the considered weights for each following criterion of degree of difficulty including quality, width, slope, category, and route directness are 0.331, 0.286, 0.188, 0.172 and 0.020, respectively.  Finally, genetic meta-heuristic algorithm is used to select the optimal route and the results compared with common Dijkstra routing algorithm. The length of the selected route by GA is about 130 meters in one time and about 300 meter in the other time more than the selected one by Dijkstra algorithm. Based on the implemented comparison, the represented approach in this paper had a considerable superiority over the simple current methods.

کلیدواژه‌ها [English]

  • Urban Emergency Vehicles
  • Optimization
  • Effective parameter
  • genetic algorithm
  • Routing

1- پهلوانی، پ، 1391. مسیریابی بهینه چند معیاره برای راننده در محیط شهری با استفاده از الگوریتم های ژنتیک و تهاجم گیاهان هرز تلفیق شده با فازی و شبکه عصبی مصنوعی، رساله دکتری مهندسی نقشه برداری، گرایش سیستم های اطلاعات مکانی. استاد راهنما : دلاور،م. لوکس، ک. پردیس دانشکده های فنی، دانشگاه تهران.

2- طرح مطالعات جامع حمل و نقل کشور, اسفند 1386. گزارش فاز 3، پیش بینی تقاضا، جلد پنجم، مدلسازی ترافیک, وزارت راه و ترابری.

3- نادی، س، اردیبهشت1391. مسیریابی کاربرپسند با استفاده داده‌های ترافیک زمانمند،تصادفی و آنی. رساله دکتری مهندسی نقشه برداری، گرایش سیستم های اطلاعات مکانی. استاد راهنما: دلاور، م. پردیس دانشکده های فنی، دانشگاه تهران.

4- Akgungor, A. P. &Bullen, G. R., 1999. Analytical Delay Models for Signalized Intersections. Institute of Transportation Engineers. ITE , vol 69, p. 12.

5- Blackwell, H. T. &Kaufman, J. S., 2002. Response time effectiveness: Comparison of response time and survival in an urban emergency medical services system. Acad. Emeg. Med, 9.pp. 288-295.

6- Chen, Y. Z., Shen, S. f., Chen, T. &Yang, R., 2014. Path Optimization Study for Vehicles Evacuation Based on Dijkstra algorithm. Procedia Engineering, Vol 71, pp. 159-165.

7- Comolli, M. A., Finley, E., Ive, H. P. &Kingman, D., 2014. Emergency Vehicles: Improving Response Time and Efficiency. ME 302 Paper.

8- Davis, G. A. &Xiong, H., 2007. Travel Time Estimation on Arterials. Access to Destinations, p. 83.

9-Deng, Y., Chen, Y., Zhang, Y. &Mahadevan, S., 2012. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Applied Soft Computing, vol 12, pp. 1231-1237.

10- Donlon, J. J. &Kenneth, D. F., 2000. Using a Geographic Information System for Qualitative Spatial Reasoning about Trafficability, Qualitative Reasoning group. Northwestern University.

11- Dreo, J., Petrowski, A., Siarry, P. &Taillard, E., 2006. Metaheuristics for Hard Optimization. NewYork: Springer.

12-Eisenberg, M. S., Bergner, L. &Hallstrom, A., 1979. Cardiac resuscitation in the community. Importance of rapid provision and implications for program planning. JAMA, p. 241.

13- Goldberg, R. &Listowsky, P., 1994. Critical factors for emergency vehicle routing Expert systems. Expert systems with applications, Vol. 7, No. 4, pp. 589-602.

14- Holland, J., 1975. Adaptation in Natural and Artificial Systems:University of Michigan Press, Ann Arbor.

15- Jones, A. J., Evans, D., Margetts, S. &Durrant, P. J., 2002. The Gamma Test. Heuristic and Optimization for Knowledge Discovery :Cardiff University.

16- Jotshi, A., Gong, Q. &Batta, R., 2006. Dispatching and Routing of Emergency Vehicles in Disaster Mitigation using Data Fusion. Air Force Office of Scientific Research (AFOSR).

17-Kemp, S. E., Wilson, I. D. &Ware, J. A., 2010. A Tutorial On the Gamma Test. I. J. of Simulation Vol 6, pp. 1-2.

18- Kho, R. J., Zulvia, F. E. &Suryadi, K., 2012. Hybrid particle swarm optimization with genetic algorithm for solving capacitated vehicle routing problem with fuzzy demand–A case study on garbage collection system. Applied Mathematics and Computation, Vol 219, pp. 2574-2588.

19-Lee, C., Huang, C., Hsiao, T. &Wu, C., 2014. Impact of Vehicular Networks on Emergency Medical Services in Urban Areas. International Journal of Environmental Research and Public Health, Vol 11, pp. 11348-11370.

20- Malczewski, J., 1999. GIS and Multicriteria Decision Analysis. NewYork: Wiley.

21- Moghaddamnia, A., 2009. Comparison of LLR, MLP, Elman, NNARX and ANFIS Models—with a case study in solar radiation estimation. Atmospheric and Solar-Terrestrial Physics,Vol 71, pp. 975-982.

22- Mortensen, A., 2009. Street and Non-Motorized Connectivity, Kirkland: Transpo Group.

23-Musolino, G., Antonio, P., Rindone, C. &Vitetta, A., 2002. Travel time forecasting and dynamic routes design for emergency vehicles., Procedia - Social and Behavioral Sciences 87, pp. 193-202.

24- Neysani Samani, N., Delavar, M. R., Chrisman, N. &Malek, M. R., 2013. Spatial Relevancy Algorithm for Context-Aware Systems (SRACS) In Urban Traffic Networks Using Dynamic Range Neighbor Query And Directed Interval Algebra. Journal of Ambient Intelligence and Smart Environments, Vol5, pp. 605-619.

25- Neysani Samani, N., Delavar, M. R. &Malek, M. R., 2006. Effective wayfinding based on LBS using landmarks in urban environment. Proc. ICA workshop on geospatial analysis and modeling, p. 12.

26- Pahlavani, P., Delavar, M. R. &Frank, A. U., 2012. Using a modified invasive weed optimization algorithm for a personalized urban multi-criteria path optimization problem. International Journal of Applied Earth Observation and Geoinformation 18, p. 313–328

27- Raubal, M. &Winter, S., 2003. Enriching Wayfinding Instructions with Local Landmarks. Geographic information science, Lecture notes in computer science, Vol 2478, pp. 243-259.

28- Sharda, R. &Vob, S., 2008. The Vehicle Routing Problem: Latest Advances and new challenges. Springer Science+Business Media,LLC.

29- Snyder, L. V. &Daskin, M. S., 2006. A random-key genetic algorithm for the generalized traveling salesman problem. European Journal of Operational Research, Vol 174, pp. 38-53.

30- Spiess, H., 1990. Conical Volume-Delay Function. Transportation Science, Vol24, pp. 153-158.

31-  Steiner, R. L., 2004. Future Directions For Mutimodal Areawide Level of Service Handbook Research and Development, The Florida Department of Transportation.

32- Westphal, M., Wolfl, S., Nebel, B. &Renz, J., 2011. On Qualitative Route Descriptions: Representation and Computational Complexity, Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.